Dynamic Wavelength Routing in WDM Networks under Multiple Signal Quality Constraints

Weiyi Zhang, Guoliang Xue, Senior Member, IEEE, Jian Tang, Krishnaiyan Thulasiraman, Fellow, IEEE

Abstract—Most research works in routing and design of optical networks assume that the optical medium can carry signals without any bit error. However, the physical impairments on the optical signal quality introduced by optical components, such as erbium-doped fiber amplifiers (EDFA) and optical cross connects (OXC's), must be considered in the routing and design problems of WDM networks in practice. In this paper, we studied the dynamic connection provisioning problem in WDM networks under multiple signal quality constraints. We present a polynomial time optimal algorithm that finds an active path for an incoming connection request with minimum network resource consumption. Simulation results show that our solution outperforms the previously best solution to the problem.

Keywords: WDM networks, lightpath, routing algorithm, OEO modules, path provisioning

1. I NTRODUCTION

Fiber optics have replaced copper to be the primary transmission medium. Wavelength Division Multiplexing (WDM) networks effectively increase single-link bandwidth from 10Mbps to over 160Gbps, consequently have been considered as a promising candidate for the next-generation backbone network by researchers in the field. There have been many previous works on routing and wavelength assignment (RWA) problem [2], [7], [8]. Most previous works have investigated the problems under the assumption that the optical medium is an ideal one which can carry data signals without any bit error. Under this assumption, the effects of transmission impairments on the signal quality of a connection do not need to be considered. However, at the present time, a wavelength-routed network faces several technical difficulties in overcoming the physical impairments introduced by optical components such as erbium-doped fiber amplifiers (EDFA) and optical cross connects (OXC's). Physical impairments, e.g., power loss, noises, and dispersions, impose fundamental constraints on the quality of signals in WDM optical networks [5], [11], [14]. Therefore, at the destination node, the received signal quality may be so poor that the bit-error rate (BER) could be too high to be acceptable, thereby making the lightpath unusable [1], [5], [9], [11].

In [9], the authors analyzed the impact of transmission performance in WDM networks under different routing strategies. In [5], the authors considered the impact of transmission impairments on the teletraffic performance in WDM networks. Huang et al. [4] proposed a physical layer hierarchical RWA model to evaluate optical signal-to-noise ratio (OSNR) and polarization mode dispersion (PMD) on a candidate lightpath, and decide whether to set up the lightpath on network layer. However, the aforementioned works cannot recover the optical signal in a lightpath. With current technology, only OEO (optical-electrical-optical) conversion can solve such a problem [4], [13], [14]. The concept of translucent networks was proposed in [6]. In a translucent WDM mesh network, a small number of OEO modules are placed sparsely. With sparse OEO regeneration, an optical signal can travel as long as possible before its signal quality falls below a threshold.

How to provide lightpaths with sparse OEO conversion in translucent WDM mesh networks has been studied recently. In [10], considering a single signal constraint, a new 2-D Dijkstra’s algorithm was provided to find a connection. In [14], considering the OSNR constraint, the authors provided several simple heuristics to find paths for connection requests. We note that both works considered only one signal constraint and both used a simple regeneration model. They also assumed that there is at most one regenerator on each node, and do not consider the regenerator shareability issue [13]. In [12], the authors provided a practical network model. With the consideration of multiple linear signal constraints, the authors proposed several heuristics to find paths for connection requests. None of the previous works guarantees a feasible active path for an incoming connection request even when feasible paths exist.

In this paper, we use the sophisticated network model proposed in [12], and propose a novel algorithm which can find working paths for incoming requests if feasible paths exist. Moreover, our algorithm can find an optimal solution which uses the minimum number of OEO modules. The rest of the paper is organized as follows. In Section 2, we introduce the transmission impairments in optical networks, and describe the network model used and the problem we study. This is followed by Section 3 with a study of the dynamic path provisioning problem. Performance evaluation of our algorithms is presented in Section 4. We conclude our work in Section 5, summarizing our contributions.

2. P ROBLEM FORMULATION

A. Transmission Impairments in Optical Networks

Two linear impairments are considered in this paper: Amplifier Spontaneous Emission (ASE) and Polarization Mode Dispersion (PMD), which are regarded as the two key linear impairments that can be practically used to constrain optical layer routing [11]. These two impairments have been extensively discussed in many previous works [4], [6], [11], [13].

1) Polarization Mode Dispersion: PMD management requires that the time-average differential time delay between

978-1-4244-2324-8/08/$25.00 © 2008 IEEE.
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.
two orthogonal states of polarizations, $[\Delta_i]$, be less than a fraction α of the bit duration, $T = 1/B$, where B is the bit rate. A typical value for α is 0.1 [11]. Assume that a transparent segment consists of M fiber spans, where the kth span has length $L(k)$ and fiber PMD parameter $D_{PMD}(k)$. The average differential delay is expressed as:

$$B\left(\sum_{k=1}^{M} D_{PMD}(k)^2 \ast L(k) \leq \alpha \right)$$ \hspace{1cm} (1)

Assume that the length of a fiber span is integer, and all fiber spans have the same PMD parameters, i.e., $D_{PMD}(k) = D_{PMD}$. PMD gives the constraint on the length of a lightpath with acceptable BER:

$$L = \sum_{k=1}^{M} L(k) \leq \frac{\alpha^2}{B^2D_{PMD}^2} = C_{PMD}$$ \hspace{1cm} (2)

2) Amplifier Spontaneous Emission: ASE is the dominant noise in optical networks, and degrades the signal to noise ratio. An acceptable optical SNR level (SNR$_{min}$) which depends on the bit rate and transmitter-receiver technology needs to be maintained at the receiver. The upper bound on M, the maximum number of spans, is obtained using the OSNR constraint in [11]:

$$\sum_{k=1}^{M} n_{sp}(k)(G(k) - 1) \leq \frac{P_L}{2h\nu B_o SNR_{min}}$$ \hspace{1cm} (3)

where P_L is the average optical power at the transmitter, $G(k)$ and $n_{sp}(k)$ are the amplifier gain and excess noise factor, respectively, on the kth span, $h = 6.63 \times 10^{-34} J/Hz^2$ is the Planck’s constant, ν is the carrier frequency, and B_o is the optical bandwidth. Assume the M optical spans introducing the same noise power and that each optical amplifier has the same power gain G. Then

$$M \leq \frac{P_L}{2SNR_{min}h\nu(G-1)B_o} = C_{ASE}$$ \hspace{1cm} (4)

ASE can be understood as the constraint for the maximum number of links a lightpath may have.

B. Network Model

In this paper, we consider a translucent network, which is a wavelength-routed mesh network with the capability of sparse OEO regeneration [13]. Such a network consists of a number of wavelength-routing nodes with optional OEO modules and interconnected by optical fiber links. We assume that each link has a single fiber in each direction, while each fiber has a fixed number of wavelengths that are used to carry data. Each node has a fixed number of add and drop ports, through which the user data can access the network. The node has inherent regeneration resources because it provides the basic regeneration resource of Tx/Rx pairs. 3R (regenerate, reshape and retimed) regenerators can be attached between a Tx/Rx pair to implement signal regeneration in the electronic domain. The combination of a transmitter, a receiver, and an electronic 3R regenerator is called an OEO module [13]. Such a node model allows all-optical switching, by WRS switching, as well as OEO regeneration by using an OEO module on the node. The path from the source node to the destination node is divided into several segments by OEO regenerations at intermediate nodes, which are named regeneration nodes. Each segment is defined as a regeneration segment [13].

C. Problem Statement

We study a dynamic WDM routing problem of great interest to network service providers. A wavelength on a fiber is called as a channel. Terms OEO module and regenerator are used interchangeably in this paper. Throughout this paper, W, m, n denote the number of wavelengths per fiber, the number of links and the number of nodes of a network, respectively.

Definition 2.1: An r-node is a node with OEO modules equipped. R-nodes is the set of all r-nodes.

Definition 2.2 (Dynamic Reliable WDM Routing Problem): Given the following information of a translucent network:

1) New connection requests that arrive dynamically;
2) The network topology and the number of wavelengths W on each fiber;
3) The R-nodes in the network, and the number of OEO modules on each r-node;
4) Current network accommodation status. In other words, we know whether a channel is free or used.

The objective of the problems is to satisfy each coming connection request with an active path, on which the signal quality received at each node must be recognizable. A path which satisfies the signal quality constraints is a feasible solution. An optimal solution to this problem is a feasible path which uses the minimum number of regenerators, and consumes the minimum number of free wavelengths among all paths that use the minimum number of regenerators.

3. Dynamic Reliable WDM Routing Scheme

In this section, we propose a novel scheme to find an optimal solution to the Dynamic Reliable WDM Routing problem if there exists any feasible path. The request will be dropped by our scheme if there is no feasible solution.

A. Novel Graph Transformation

PMD and ASE constraints are bounded by C_{PMD} and C_{ASE}, which are both integers. In our algorithms, we use C_1 and C_2 to represent C_{ASE} and C_{PMD}, respectively. ASE_u and PMD_u denote the ASE and PMD cost on node u for the coming connection request. $ASE(u,v)$ and $PMD(u,v)$ are the ASE and PMD costs on edge (u,v).

Our algorithm uses a novel graph transformation to combine all information; OEO and channel usage, PMD and ASE cost, into a single auxiliary graph. We first present Algorithm 1 to construct an auxiliary graph G_{aux} from the original graph G.

In Line 2 and 3, on each wavelength plane (c), we split each node u into $G \times (C_1+1) \times (C_2+1)$ copies in the form $u(c_1,c_2)$, where (c_1,c_2) is a possible (ASE, PMD) combination.

For each node $u \in G$, we process it according to two cases.

CASE 1: if u is NOT a r-node: From Line 4 through Line 10, for each edge (u,v) in the original graph, a group of edges, from u^λ to v^λ, are added into G_{aux}. Each of these edges means that, given a path from s to node u with signal costs ASE_u and PMD_u on node u, if we extend the path by using (u,v) for the connection (s,d), then it has signal costs ASE_v and PMD_v when reaching node v, where $ASE_v = ASE_u + ASE(u,v)$ and $PMD_v = PMD_u + PMD(u,v)$ because no regeneration can be applied on node u. The cost of such an edge is 1, which is the cost of consuming a new channel.

Algorithm 1 Setup_Aux_Graph(G, G^{aux}, R-nodes)

1: for (each wavelength λ_i) do
2: From the wavelength graph G_{λ_i}, of G, set up a wavelength graph $G^{aux}_{\lambda_i}$ with node set $V^{aux}_{\lambda_i}=V_{\lambda_i} \times \{0,1,\ldots, C\}$ and edge set $E^{aux}_{\lambda_i}$.
3: $V^{aux}_{\lambda_i}=\{(s,\lambda_i),(d,\lambda_i)\}$ such that (s,λ_i) is the source node and (d,λ_i) is the destination node.
4: for (each node $u \notin R$-nodes) do
5: for (each undirected edge (u,v) in $G^{aux}_{\lambda_i}$) do
6: Add directed edges from $u^\lambda_{\lambda_i}(\text{ASE}_{\lambda_i} \text{PMD}_{\lambda_i})$ to $v^\lambda_{\lambda_i}$ iff:
7: $\text{ASE}_{\lambda_i}=\text{ASE}(u,v)$ and $\text{PMD}_{\lambda_i}=\text{PMD}(u,v) \leq C_1$ and $\text{PMD}_{\lambda_i}=\text{PMD}(u,v) \leq C_2$
8: Assign cost 1 to this edge;
9: end for
10: end for
11: end for
12: if (there is a free Tx-Rx pair on node u) then
13: Add a directed edge into $E^{aux}_{\lambda_i}$ from vertex
14: $u^\lambda_{\lambda_i}(\text{ASE}_{\lambda_i} \text{PMD}_{\lambda_i})$ to vertex $v(0,0)$$^\lambda_{\lambda_i}$
15: Assign cost MN to the edge;
16: end if
17: for (each undirected edge (u,v) in $G^{aux}_{\lambda_i}$) do
18: Add directed edges from $u^\lambda_{\lambda_i}(\text{ASE}_{\lambda_i} \text{PMD}_{\lambda_i})$ to $v^\lambda_{\lambda_i}$ such that:
19: $\text{ASE}_{\lambda_i}=\text{ASE}(u,v)$ and $\text{PMD}_{\lambda_i}=\text{PMD}(u,v) \leq C_1$ and $\text{PMD}_{\lambda_i}=\text{PMD}(u,v) \leq C_2$
20: Assign cost 1 to this edge;
21: end for
22: end for
23: for (each pair of wavelengths λ_1 and λ_2) do
24: for (each node $u \in R$-nodes) do
25: Connecting $u^\lambda_{\lambda_1}$ and $u^\lambda_{\lambda_2}$ with a new edge;
26: Assign cost ∞ to this edge;
27: end for
28: end for
29: The constructed auxiliary graph G^{aux} is composed by
30: node set $V^{aux} = \bigcup_{1 \leq \lambda \leq W} V^{aux}_{\lambda_i}$,
31: and edge set $E^{aux} = \bigcup_{1 \leq \lambda \leq W} E^{aux}_{\lambda_i}$

We do not add an edge if $\text{ASE}_v > C_{\text{ASE}}$ or $\text{PMD}_v > C_{\text{PMD}}$ because obviously such an edge is not on any feasible path.

Case 2: If u is a r-node: From Line 11 through Line 21, if there is a free Tx-Rx pair on node u, it can apply regeneration. Thus, new edges are added from $u^\lambda_{\lambda_1}(\text{ASE}_{\lambda_1} \text{PMD}_{\lambda_1})$ to $u^\lambda_{(0,0)}$ which represents that the signal is cleared and restored. The cost of such an edge is MN(> 1), which means using a regenerator has cost MN. Meanwhile, node u can choose not to apply regeneration. This case is handled the same as the case that node u is not a r-node (Lines 16 - 20). In the FOR-loop in Lines 23-28, for each r-node u, we connect $u^\lambda_{\lambda_1}$ and $u^\lambda_{(0,0)}$ for any two wavelength λ_1 and λ_2. Such an edge represents that a wavelength conversion, together with regeneration, is applied at node u. The cost of such an edge is ∞ because we do not allow the wavelength conversion in this work.

Let us use an example to illustrate Algorithm 1. The original network is shown in Fig. 1(a), which consists of 4 nodes and 4 edges. Assume that only node x is a r-node. There are 2 wavelengths on each edge, and the costs of ASE and PMD are shown as the edge label for each edge. Both C_1 and C_2 are set to be 1 in the example.

![Algorithm 1 Setup_Aux_Graph](image)

There are 2 wavelength planes in G^{aux}. Initially, all channels are free. We use wavelength plane G_{λ_1} for illustration since the operations are the same on both planes. For each node in the original network G, it is split into $(C_1 + 1) \times (C_2 + 1)$ copies. Each of them represents a possible (ASE, PMD) combination on the node. For example, node y_{10} means that the ASE cost at node y is 1, and the PMD cost is 0. Then we need to add edges into G^{aux}. Edges from s_{00} to x_{11} and y_{10}, as well as edge $(x_{00}, d_{11}^{(0)})$ are added. The edge (s_{00}, x_{11}) implies that by taking edge (s, x) in G from source s, the ASE and PMD will both be 1 on node x. Each such edge has cost 1, which means that we consume one free channel by utilizing this edge for the connection. But no other edges can be added because either bound C_1 or C_2 would be violated. For the r-node x, we add edges from $x_{i1}^{(0)}$ to $x_{i1}^{(0)}$ with cost MN, where M and N are the number of edges and nodes in G^{aux}, respectively. Using such an edge represents that a regenerator on node x will be used with a large cost MN, which implies that we would take all free channels for a connection if possible rather than use a regenerator. Next, we connect $x_{01}^{(0)}$ to $x_{01}^{(0)}$ by an ∞-cost edge because wavelength conversion is not allowed in our algorithm. The constructed auxiliary graph G^{aux} is shown in Fig. 1(b).

B. Optimal Solution for Active Path Provisioning

After the auxiliary graph construction, Algorithm 2 is presented to find an optimal solution for active path provisioning.

To find an active path for request (s, d), we first need to have the auxiliary graph (Lines 1 - 3). Then from Line 4 through Line 10, we add some new edges which are particularly used for the incoming request. On each wavelength plane, we have new edges from $d_{i1}^{(0)}$ to $d_{i1}^{(1)}$. Such an edge means that if we can find a path to node d with signal costs less than threshold, we can reach the destination node in G^{aux}, $d_{i1}^{(1)}$, with no more cost. Moreover, from Line 11 to Line 14, vertically we connect $s_{01}^{(i)}$ to $s_{01}^{(i+1)}$ and $d_{i1}^{(0)}$ to $d_{i1}^{(1)}$. These edges represent that we can start from source node s at any wavelength plane, and stop at destination node d at any wavelength plane too. Once we finish adding the new edges, in Line 15 we use Algorithm 3 to find an optimal path for the request from $s_{01}^{(i)}$ to $d_{i1}^{(W)}$. With the found path AP_{i} in G^{aux} from Algorithm 3, Algorithm 2 can get the path $activep$ and OEO utilization in original graph G (Lines 16-18), or there is no feasible solution and the request is dropped in Line 20. In Line 18 of Algorithm 2, all edges added for this specific request (s, d) will be removed, and G^{aux} is changed back to its original version for future connection requests.
Algorithm 2 Active Path Provision \((G, s, d, R\text{-nodes})\)

1. if \((\text{auxiliary graph } G^{aux}) \text{ has not been constructed}) \text{ then}
2. \hspace{1cm} Setup Aux Graph \((G, G^{aux}, R\text{-nodes})\);
3. \hspace{1cm} end if
4. for (each wavelength \(\lambda_i\) do
5. \hspace{1cm} for \((\text{ASE}_d = 0; \text{ASE}_d < C_1; \text{ASE}_d++) \text{ do}
6. \hspace{2cm} for \((\text{PMD}_d = 0; \text{PMD}_d < C_2; \text{PMD}_d++) \text{ do}
7. \hspace{3cm} Add zero-cost edges from node \(d^{\text{ASE}_d}_{\text{C}_1, 2}\) to \(d^{\text{PMD}_d}_{\text{C}_1, 2}\);
8. \hspace{2cm} end for
9. \hspace{1cm} end for
10. \hspace{1cm} end if
11. \hspace{1cm} end for
12. \hspace{1cm} end if
13. \hspace{1cm} end if
14. end for
15. \hspace{1cm} QualificationLP \((G, G^{aux}, s, d, \lambda_i)\);
16. if (an active path \(AP\) is found) then
17. \hspace{1cm} return \(AP\);
18. \hspace{1cm} end if
19. \hspace{1cm} Drop the connection request \((s, d)\);
20. \hspace{1cm} end if

Algorithm 3 QualificationLP \((G, G^{aux}, s, d, \lambda_i)\)

1. for (each link \(e\) in \(G^{aux}\)) do
2. \hspace{1cm} if (the channel on \(e\) is not free) then
3. \hspace{2cm} remove \(e\) from \(G^{aux}\);
4. \hspace{1cm} end if
5. \hspace{1cm} end for
6. for (each node \(u \in R\text{-nodes})\) do
7. \hspace{1cm} if \((u\) has no more free OEO module) then
8. \hspace{2cm} remove all incoming edges to node \(u_{\lambda_i, 0}\) and its all inter-layer edges;
9. \hspace{1cm} end if
10. \hspace{1cm} end for
11. Compute the shortest path \(activep\) from source \(s_{\lambda_i, 0}\) to destination \(d^{\text{W}}_{\lambda_i, 2}\) in auxiliary graph \(G^{aux}\);
12. if (there does not exist such a path \(activep\)) then
13. \hspace{1cm} block the connection request;
14. \hspace{1cm} else
15. \hspace{1cm} Return the path \(AP\) corresponding to \(activep\) in \(G\) as working path candidate;
16. \hspace{1cm} end if

In Algorithm 3, at first all used channels are removed because active paths cannot share channels (Lines 1-5). Then in the FOR-loop starting from Line 6, if a \(r\)-node \(u\) has no more free OEO module, we remove all edges to \(u_{\lambda_i, 0}\) because no regeneration can be applied, and \(u_{\lambda_i, 0}\) can not be reached. After updating the network, in Line 11, shortest path algorithm, say Dijkstra algorithm, can be used to find a shortest path from \(s_{\lambda_i, 0}\) to \(d^{\text{W}}_{\lambda_i, 2}\) in \(G^{aux}\). We return the found path as an active path for the request (Line 15).

Let us use Fig. 2 for illustration of our approach on the network shown in Fig. 1(a). Once we have the auxiliary graph in Fig. 1(b), we add some new edges, which are marked by the dashed edges in Fig. 2. For example, we add an edge from \(d_{01}\) to \(d_{11}\) on each wavelength plane, and connect \(s_{\lambda_i, 0}\) to \(d^{\text{W}}_{\lambda_i, 0}\).

Then, a shortest path \(activep\) \(\left((s_{\lambda_i, 0}, x_{11}, x_{00}, d_{11})\right)\) is found from node \(s_{\lambda_i, 0}\) to node \(d^{\text{W}}_{\lambda_i, 1}\) in this graph, which is marked by the thick red edges in Fig. 2. The path \(AP\) in \(G\) for this example is \((s, x, d)\) with cost \(MN + 2\). We know that one OEO module needs to be utilized on node \(x\) with cost \(MN\), and the number of the consumed free channels is two.

Theorem 3.1: For any connection request, Algorithm 2 can correctly find a connection in \(O(W \cdot C_1 \cdot C_2 \cdot m)\) time if a feasible path exists. In addition, the connection uses the minimum number of regenerators. Among all possible connections which use the minimum number of regenerators, the computed path uses the minimum number of free wavelengths. □

Proof: Following the construction of \(G^{aux}\) in Algorithm 1, we observe that \(G^{aux}\) has a path \(activep\) from \(s_{\lambda_i, 0}\) to \(d^{\text{W}}_{\lambda_i, 2}\) if and only if there is a corresponding feasible path \(AP\) from \(s\) to \(d\) in graph \(G\). In addition, because in \(G^{aux}\) we remove all edges which would bring the violation to signal constraints, any path must reach a node \(d^{\text{ASE}_d}_{\text{C}_1, 2}\) where \(\text{ASE}_d\) ≤ \(C_1\) and \(\text{ASE}_d\) ≤ \(C_2\). This proves the correctness of the algorithm.

To construct an auxiliary graph (Line 2 of Algorithm 2), each wavelength plane of the auxiliary graph has \(O(n \cdot C_1 \cdot C_2)\) nodes, and \(O(C_1 \cdot C_2 \cdot (m + n))\) edges. Totally \(G^{aux}\) has \(O(W \cdot n \cdot C_1 \cdot C_2)\) nodes and \(O(W \cdot C_1 \cdot C_2 \cdot (m + n) + W^2)\) edges. In next two FOR-loops (Line 4-14), we add \(O(W \cdot C_1 \cdot C_2)\) more edges. Then Algorithm 3 is called in Line 15 to find a path. In Algorithm 3, first it takes \(O(W \cdot C_1 \cdot C_2 \cdot m)\) time to remove the used edges (Lines 2-4). Then \(O(W \cdot C_1 \cdot C_2 \cdot n)\) time is spent to update the edges incident with the regeneration nodes. In Line 11 of Algorithm 3, it takes \(O(W \cdot C_1 \cdot C_2 \cdot (m + n))\) time to find a shortest path in the acyclic graph \(G^{aux}\) [3]. Finally we use \(O(n)\) time to find the path \(AP\) and return. Thus, Line 15 of Algorithm 2 takes \(O(W \cdot C_1 \cdot C_2 \cdot (m + n))\) time in total, we can find that the time complexity of Algorithm 2 is \(O(W \cdot C_1 \cdot C_2 \cdot m)\) because \(m\) is larger than \(n\) since the network \(G\) is connected.

In our approach, the cost of using a free channel is 1, and the cost of using a free OEO module is \(MN\). Hence for a connection, we would use as many as \(MN\) free channels instead of one free OEO module (note that there are at most \(N\) free channels can be used on a path). Therefore our algorithm can find a solution with the minimum usage of regenerators, and the minimum consumption of channels while using the minimum number of OEO modules.

4. Performance Evaluation

We implemented our algorithm of this paper (denoted by \(AP\)-OPT in the figures), and compared it with the previously best heuristic in [12] (denoted by \(HW\)-SPF+Trace-back in the figures). A well-known network is used to study the routing capability of the algorithms. Thus, connection blocking probability is the main performance criteria. Different numbers of wavelengths \(W\) on each fiber and different numbers of \(r\)-nodes are tested. For each test case, we generated different
random connection requests. A connection request is generated at each time unit with random source and destination, and has a life time which is set to a random integer uniformly distributed in $[1, 100]$. The network used for our tests is the Pacific Bell network (15 nodes and 21 links), shown in Fig. 3. Each link is labeled by its length in kilometers. The system parameters are set to typical values as in [11].

Fig. 3. The 15-node/21-link Pacific Bell network.

When a connection request arrives, we use both algorithms to compute a path. If we can find a feasible path, we reserve the corresponding network resources, including regenerators and free channels. Otherwise the connection request is dropped. Once a connection is expired, all resources used by it are released. Our numerical results are presented in Fig. 4, where each figure shows the average of 100 runs. It’s worth noting that we have also tested both algorithms on some randomly generated network topologies. The results are similar. Therefore we only present the results for Pacific Bell Network here due to the page limit. In Fig. 4(a) and 4(b), we compared the routing capability between two algorithms with randomly generated r-nodes which constitutes 25% and 33% of all nodes, respectively. On each r-node, as in [13], the number of OEO modules is assumed the same as the number of wavelengths on a fiber. 40 to 100 connections were generated and injected into the network one by one. We can observe that AP-OPT has noticeable lower blocking probability than HW-SPF+Trace-back heuristic for all scenarios. For example, with the setting of $W=16$, R-nodes constituting 25% of all nodes, and the number of connection requests being 70, AP-OPT achieved the blocking probability of 2%. Note that a blocking probability obtained by HW-SPF+Trace-back heuristic is about 22%. Another interesting observation is that the number of r-nodes has more significant effect than the number of wavelengths per fiber at reducing the blocking probability. For example, given 33% R-nodes and $W=8$, HW-SPF+Trace-back has better performance than it has with more wavelength ($W=16$) but less R-nodes (25%). Similar property can also be observed from the results of our algorithm. In Fig. 5, we compare the consumptions of OEO modules and free channels between two algorithms, which is represented by the y-axle. And x-axle represents the ratio of the number of r-nodes in the network. Dynamic connection requests are kept being inserted into the network until both algorithms accommodated 100 connections. From the Fig. 5, it shows that AP-OPT uses less number of OEO modules and free channels than HW-SPF+Trace-back does in all testing cases. This confirms our analysis at the end of Section 3.

5. CONCLUSIONS

In this paper we considered the dynamic reliable routing problem in WDM networks under multiple signal quality constraints. We proposed a novel algorithm that can return a lightpath for a connection request if one exists. The connection uses the minimum number of OEO regenerators. Also the computed path consumes the minimum number of free wavelengths, among all connections which use the minimum number of regenerators. Simulation results demonstrated that our algorithm outperforms the previously best heuristic in [12].

REFERENCES

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.