
 

 



 I 

 
ABSTRACT – Graphics Processing Units are a new type of hardware device that have over 

112 floating-point units accessible from CUDA or OpenCL using the SPMD abstraction from 

CUDA or OpenCL. These can be used in many high performance applications such as medical 

imaging, computational biology and video image processing. The Rootbeer GPU Compiler is 

a system that enables these processors to be used from the Java Programming Language.  

The system is the only system including support for Java Programming Language features 

such as methods, fields and objects. It includes a high performance throughput API that offers 

faster performance than the competitor Aparapi and contains a complete API to use CUDA 

primitives from Rootbeer including atomic integers, shared memory, threadfence and 

syncthreads.  To obtain maximum performance while programming a GPU, the developer 

should experiment with thread count, block count, shared memory size and register count. 

These aspects of programming are all configurable while using Rootbeer and we show in 

examples that tuning these leads to improved performance.  This dissertation explains GPU 

programming and describes the internal structure of the Rootbeer GPU Compiler along with 

additions to the Soot Java Optimization Framework and several examples demonstrating 

performance speedups. We show in an example from computational biology of using Hidden 

Markov Model learning and likelihood calculation whichand Rootbeer can accelerate 102.7x 

with an NVIDIA Tesla C2050 device. In the final concluding remarks we give 

recommendations for supporting Java on GPUs to NVIDIA and Oracle for an industrial 

setting.  



 

 

II 

 
 
 
 
 
 
 
 

 THE ROOTBEER GPU COMPILER 
 
 
 
 

By 
 

Phil Pratt-Szeliga 
B.S. Rensselaer Polytechnic Institute, 2005 

M.S. Syracuse University, 2010 
 
 
 
 
 
 

DISSERTATION 
 
 

Submitted in partial fulfillment of the requirements for the 
degree of Doctor of Philosophy in Computer Information Science and Engineering 

in the Graduate School of Syracuse University 
 

December 2015 
 
 
 
 
 
 
 

Approved ______________________________ 
Professor James Fawcett 

 
Date ______________________________  



 

 

III 

 
 
 
 
 
 
 
 

Copyright 2015 Phil Pratt-Szeliga 
 

All rights Reserved 
  



 

 

IV 

Table of Contents 
 
Abstract  
Title Page 
Copyright  
Table of Contents   
List of Illustrative Materials  
Chapter 1: Research Statement, GPU Programming, Contributions,  
    Literature Review, Summary of Results 
Chapter 2: Technologies 
Chapter 3: Rootbeer API, Illustrative Example 
Chapter 4: Rootbeer Class Loader 
Chapter 5: Rootbeer Serialization 
Chapter 6: CUDA Code Generation   
Chapter 7: Performance 
Chapter 8: Conclusions, Recommendations, Future Work 
Appendices 
Bibliography 
Biographical Data 
 

  
 
001 
002 
003 
004 
005 
008 
 
025 
053 
065 
077 
086 
107 
121 
127 
132 
135 

 
  



 

 

V 

List of Illustrative Materials 
 
Figure 1.5.1 – Atomic Functions from CUDA that Rootbeer Supports 
Figure 1.5.2 – Selected Libraries and Systems Supporting GPUs 
Figure 1.5.3 – Summary of selected parallel GPU algorithms and data structures 
Figure 1.6.1 – Summary Performance of Rootbeer and Competing Systems 
Figure 1.6.2 – Test Setup used for Performance Comparisons 
Figure 2.2.1 – Source Lines of Code Count in Rootbeer using SLOCCount 
Figure 2.2.1.1 – Source Code for PrintNumbers.java 
Figure 2.3.1.1 – Decompiled Java Bytecode Header and Class Information for 
PrintNumbers.java 
Figure 2.3.1.2 – Decompiled Java Bytecode Constant Pool for PrintNumbers.java 
Figure 2.3.1.3 – Java Bytecode Method Signature Chart 
Figure 2.3.1.4 – Java Bytecode Types 
Figure 2.3.1.5 – Decompiled Java Bytecode for PrintNumbers Constructor 
Figure 2.3.1.6 – Decompiled Java Bytecode for PrintNumbers Print Method 
Figure 2.3.1.7 – Explanation of Print Bytecode Assembly 
Figure 2.4.1.1 – Decompiled Jimple for PrintNumbers.java 
Figure 2.4.1.2 – Identity Statement in Jimple 
Figure 2.4.1.3 – Special Invoke in Jimple 
Figure 2.4.1.4 – Method Signature for Object Constructor in Jimple 
Figure 2.4.1.5 – Field Reference in Jimple 
Figure 2.4.1.6 – Field Signature for System.out in Jimple 
Figure 2.5.1.1 – Printing Strings using a Native Method in Java 
Figure 2.5.1.2 – Java Native Interface Header File Generated with javah 
Figure 2.5.1.3 – Java Native Interface Source Code to Print a String to the Console 
Figure 2.5.1.4 – Loading a Native Library in Java 
Figure 2.5.1.5 – Java Native Interface Code to Call a Method 
Figure 2.5.1.6 – Java Native Interface Types used in Rootbeer 
Figure 2.6.1 – High-Level Architecture of NVIDIA GPUs 
Figure 2.6.2 – CUDA Code Showing Thread Divergence 
Figure 2.7.1 – Basic GPU Kernel 
Figure 2.7.2 – Basic GPU Launch Code 
Figure 2.7.3 – Allocating Host Memory with calloc 
Figure 2.7.4 – Allocating Device Memory with cudaMalloc 
Figure 2.7.5 – Copying CPU memory to GPU memory 
Figure 2.7.6 – Starting the basic_kernel on the GPU 
Figure 2.7.7 – Synchronized Threads 
Figure 2.7.8 – Copying the GPU memory to CPU memory 
Figure 2.7.9 – Releasing Device Memory with cudaFree 
Figure 3.1.1 - Rootbeer Kernel Interface 
Figure 3.1.2 – Rootbeer Kernel Class Example #1 
Figure 3.1.3 – Rootbeer Kernel Launch Example #1 
Figure 3.2.1 – Rootbeer Kernel Templates API in Throughput Mode 
Figure 3.3.1 – Rootbeer Multi-GPU Example 



 

 

VI 

Figure 3.4.1 – Rootbeer Shared Memory Example 
Figure 3.5.1 – ArraySumKernel 
Figure 3.5.2 – FloatArraySum 
Figure 3.5.3 – IntArraySum 
Figure 4.1 – Resolving Levels in Soot Class Loader 
Figure 4.2.1 – RTA Class Loading Algorithm 
Figure 4.2.2.1 – EntryMethodTester Interface 
Figure 4.2.5.1 – Class Hierarchy Example for Reverse Topological Numbering 
Figure 4.3.1 – Evaluation Results for RTAClassLoader 
Figure 5.1.1 – Performance of Accessing a Field in Java using Various Methods 
Figure 5.2.1 – Rootbeer Serialization Capabilities 
Figure 5.3.1 – Rootbeer High-Level Memory Layout 
Figure 5.6.1 – Serialization Type Order 
Figure 6.1.1 - CUDA Entry Point for Rootbeer 
Figure 6.1.2 - Parameters of the CUDA Entry Point 
Figure 6.1.3 - Specializing CUDA Entry Point for GPUMethod 
Figure 6.2.1 – Instance Method Function Signature 
Figure 6.2.2 – Instance Method Local Initialization 
Figure 6.2.3 – Instance Method Body  
Figure 6.4.1 - Resolving Virtual Method Calls 
Figure 6.5.1 - Instance Field Getter / Setter Methods 
Figure 6.5.2 – Field Offset Switch Function 
Figure 6.6.1 – Static Field Getter Method 
Figure 6.7.1 – Constructor Initialization 
Figure 6.7.2 – Constructor Body 
Figure 6.7.3 - Constructor Body #2 
Figure 6.8.1 - Synchronized Method  
Figure 6.11.1 - Instanceof Method Call  
Figure 6.11.2 - Instanceof Method 
Figure 6.14.1 – String Constant Method Call 
Figure 6.14.2 - String Constant Method 
Figure 6.15.1 - Float Array Getter 
Figure 6.18.1 - Float Array Creation 
Figure 6.20.1 - Class Constant Method Call 
Figure 6.20.2 - Class Constant Method 
Figure 6.21.1 - Shared memory writer 
Figure 7.1 – Overview of Performance Examples 
Figure 7.1.1 – Shared Matrix Multiply Kernel 
Figure 7.1.2 – Shared Matrix Multiply Timings on NVIDIA Tesla C2050 GPU and Four Intel 
Xeon Cores 
Figure 7.2.1 – Parallel HMM Viterbi Path with Rootbeer 
Figure 7.2.2 - HMM Global Sync method in Java 
Figure 7.2.3 - HMM Viterbi Path Timings on NVIDIA Tesla C2050 GPU and Single Intel Xeon 
Core  
Figure 7.2.4 – Clustering of 308 mutated Myxococcus xanthus strains 
Figure 7.3.1 – Parallel GPU Scan with Rootbeer 



 

 

VII 

Figure 7.3.2 - Scan Timings on NVIDIA Tesla C2050 GPU and Single Intel Xeon Core  
Figure 7.4.1 – Parallel GPU Histogram with Rootbeer 
Figure 7.4.2 - Histogram Timings on NVIDIA Tesla C2050 GPU and Single Intel Xeon Core  
Figure B.1 – Complete Java Bytecode Listing for PrintNumbers.java 
Figure C.1 – JNIExample source code 
Figure C.2 – Shell commands to create JNI header file with javah 
Figure D.1 – RTAClass Loader Evaluation A.java 
Figure D.2 – RTAClass Loader Evaluation B.java 
Figure D.3 – RTAClass Loader Evaluation C.java  
Figure D.4 – RTAClass Loader Evaluation D.java 
  



 

 

8 

 
 
 
 

Chapter 1 

 
 
 
 
 
 
 
 
 

Research Statement 
GPU Programming 

Contributions  
Literature Review 

Summary of Results 
 

 
 
 

1.1. Research Statement 

In this research the first compiler that allows methods, objects and fields from the 

Java Programming Language to run on the Graphics Processing Unit (GPU) was created. 

The work is more advanced than all other competing compilers because it supports 

serialization of complex objects directly to GPU memory. All other compilers require the 

developer to first convert their complex objects into simple arrays before using the GPU. 

Due to the support for objects, it is also possible to support method calls targeting any 

object. This is contrast to other compliers that only allow method calls within the same 



 

 

9 

object. In addition, Rootbeer is the most advanced system for an expert user and certain 

parallel GPU algorithms and data structures are only possible with Rootbeer. 

The first Rootbeer paper was published at HPCC-2012 [25]. Shortly after, in August 

2012, a story about Rootbeer was published on Slashdot [1].  Slashdot is a popular news 

website for science and technology topics.  After the story was released, the star count on 

the Rootbeer github page [2] began rapidly increasing and soon became a trending 

repository with over 570 stars. Twitter was active with the story and thousands of tweets 

were posted during that time. Currently, searching for “Rootbeer GPU Compiler” gives 

about 45,400 results on google.com. Now the Rootbeer github page has over 960 stars. 

After this in March 2013, a talk was presented at the NVIDIA GTC 2013 Conference [3] and 

another talk was presented on Rootbeer at SOAP 2013 [4] during the following summer. 

Rootbeer has 19 stars from major technology companies (Appendix A), and has 

incoming links from the OpenJDK domain [5] and was also listed as “state of the art” in a 

DARPA STTR Solicitation [6]. Over 350 emails have been exchanged with people using 

Rootbeer and a former Master’s student has extended Rootbeer in his thesis to support 

GPUs on clouds of multiple GPU enabled computers using Apache Hama. 

These developments began with work on GPUs seven years ago and, at the time, the 

research was interested in accelerating C/C++ code. It was found that using these 

specialized processors could be quite a challenge for an inexperienced CUDA developer. 

The next section is devoted to GPU Programming and describes the process we went 

through to develop the application. The research indicated it was clear that assistance with 

serialization and CUDA code generation was key to improving programmer productivity. 

Rootbeer was then designed to provide this assistance so that one can focus on high-level 



 

 

10 

changes needed in algorithms and data structures that will result in faster parallel 

programs using GPUs. 

The up-coming discussion on GPU Programming should demonstrate to the reader 

why Rootbeer's support is important and needed. After the discussion, the remainder of 

the chapter describes the contributions, a summary of the performance numbers and a 

short literature review. 

Chapter 2 will discuss technologies used in Rootbeer, which will give the reader a 

foundation for understanding how Rootbeer works and motivate the importance of ourthe 

additions to the Soot Java Optimization Framework [7].  Chapter 3 will show how to 

program with Rootbeer and in Chapters 4, 5 and 6 we will show the algorithms and data 

structures used by Rootbeer and it’s internal structure.  Chapter 7 will show performance 

of a variety of algorithms and discuss more advanced ways to optimize GPU performance 

on a single specific device.  Chapter 8 will concludes the dissertation and provides 

recommendations for projects aiming to support GPUs from Java, such as the Sumatra 

Project from Oracle. 

 

1.2. GPU Programming 

Often a developer who wants to program the GPU will start out writing anthe 

application in serial using C/C++. Or maybe their task is to port an existing application to 

the GPU.  

We started programming GPUs by attempting to accelerate a tomographic 

reconstruction algorithm for medical imaging.  The code was written in a serial manner, 

and in this code, there were many loops ranging over a rotation and a 2-dimensional plane. 



 

 

11 

Inside of the loops there was code to compute the inverse radon transform, which also had 

some levels of looping. 

We started looking for places where we could launch threads in parallel. We will call 

each of these places a “cut”.  The code given to us had huge loops with methods and globals 

inside them. In the methods there were more loops. In the first attempt, we chose a fairly 

low level to make a cut. At this cut level, we needed to 1) allocate GPU memory, 2) copy 

state to GPU memory, 3) write the GPU code in CUDA, 4) write code to launch the task 

while choosing how many blocks and threads to use, 5) copy state back from GPU memory 

and 6) free GPU memory. 

This first cut took a lot of developer time to organize transferring our state into and 

out of arrays of primitive types. Adding to our difficulty, the existing code had many global 

arrays. We had to manually find sizes of these arrays so we could copy them to the GPU 

using a specialized memory copy. Our data also included a two dimensional array. This 

required first a GPU memory allocation of the outer array, and then GPU memory 

allocations of all inner arrays and after special memory copies.  This is common practice in 

C/C++, but with Java/Rootbeer a developer does not have to do this, saving programming 

time for an experienced developer and opening new possibilities for multi-disciplinary 

researchers coming from other fields such as computational biology. 

Once through the issues of creating our first GPU program with a single cut, we ran 

the program and debugged the errors. This required approximately a month’s time. But to 

our disappointment, the code running on the GPU ran slower than our reference 

implementation on the CPU. 



 

 

12 

We studied the GPU documentation and learned that we needed to launch 

thousands of threads in parallel, not just a few. In order to get this many threads, we 

needed to increase the looping level. We decided to move our cut level to nearly the outer 

most loop level. 

We re-wrote the code for 1) memory allocation, 2) serialization, 3) task size 

selection, 4) kernel code, 5) deserialization and 6) memory release. Now re-writing our 

GPU application to use a different “cut” level, we found that our tasks would not launch due 

to insufficient GPU resources. At this high-up level in the application, the program could not 

fit within the GPU registers available on our device, but we did have enough threads now. 

It was learned, that we had to make a cut at the proper level. If the level is too low, 

the developer may not get a speedup. A lower cut does less computation per launch and 

cannot hide the latency associated with GPU computation. If the level is too high, the 

developer may run out of GPU resources. The higher level cut often requires more device 

memory, registers and threads.  

Looking back, we saw that experimenting with a new cut level can be expensive in 

terms of developer time. This is primarily because of the needed manual development of 

interfacing the CPU memory with the GPU and writing the proper kernel code. In a full 

application, many cuts are most likely needed to handle regions of serial code mixed with 

regions of highly parallel GPU code. Also, in larger programs, the data may be more 

complicated; in general, the data is an arbitrary graph of composite objects. 

Rootbeer’s major feature is that it can serialize and deserialize arbitrary graphs of 

composite objects to GPU memory and generate the matching CUDA code. This enables the 



 

 

13 

developer to experiment with many cut levels and changes in algorithms, data structures 

and GPU configuration to obtain maximum performance. 

We will now turn to talk about the contributions of this research and continue on 

with an in-depth discussion of CUDA programming and GPU optimization later. 

 

1.3 Contributions 

We are making the following contributions inof this dissertation. 

1) Rootbeer is the most advanced system for expert GPU usage. With our system the 

developer can configure the shared memory, thread / block count and register 

count, which are essential for the correct operation of certain parallel GPU 

applications. Also Rootbeer contains support for CUDA built-ins such as 

syncthreads, syncthreadsCount, threadfence, atomicAdd, atomicExch, atomicCAS 

and more, which are required for advanced GPU algorithms and data structures. No 

other Java/GPU system can configure the expert features to the degree that our 

system canis able to. 

2) Rootbeer is the most advanced system with regard to executing methods, fields and 

objects on the GPU. 

3) Rootbeer has proven to work in practical systems and can be downloaded by 

anyone in the world, open-source. In 2013, Rootbeer ranked 2077th most popular 

by star count out of 10 million repositories in github, placing it in the top 0.02 

percentile [8, 9] . 

4) We have improved the Soot Java Optimization Framework by supplying a new class 

loader called the RTAClassLoader. This class loader is 10x faster than the existing 



 

 

14 

Soot class-loader and uses 8x less memory. These improvements can make 

infeasible analyses feasible on normal laptops or desktops.  Soot is currently widely 

used for the analysis of Android malware and security of Java websites. 

5) We will show a case study of using Rootbeer with an application from the Welch Lab 

and demonstrate a 102.7x speedup using Rootbeer over a single core using regular 

Java. This example uses a global synch primitive that deadlocks on all other 

competing systems. 

6) We will give suggestions and insight to new projects such as OpenJDK Sumatra that 

wish to support Java on the GPU in industrial settings. 

 

 Rootbeer was developed using test-driven design (TDD) and contains a set of 103 

high level test cases that can be run as built-in test. 77 of these test cases currently pass on 

Windows, Linux and Mac with Java 1.7. These test cases cover every aspect of the Java 

programming language, except the following aspects: 

1) native methods 

2) invokedynamic 

3) reflection 

4) garbage collection 

Specifically, the features of the Java 1.7 language that are supported are listed below: 

1) Using any composite object, method or field 

2) Arrays of every primitive type of arbitrary dimension * 

3) Arrays of any reference type of arbitrary dimension * 

4) Instance and Static constructors, methods and fields 



 

 

15 

5) Efficient String manipulations using a custom CUDA StringBuilder class.  

6) Exceptions that can be thrown and caught on the GPU. If an exception is thrown 

beyond the GPU boundary, it can be caught on the CPU by the developer 

7) Classes with super and outer classes 

8) Virtual methods 

9) Dynamic memory allocation without garbage collection 

10)  The synchronized keyword on methods and objects 

11)  Printing to the screen for all primitive types and Strings from the GPU 

* including the array length field and clone method 

 

 All of these features work together as a cohesive whole and arbitrarily complex 

combinations of them have been proven to work during our case study with the Welch Lab 

and in our performance examples.  In addition, Martin Illecker from the University of 

Innsbruck has used Rootbeer in his Master’s thesis to bring GPU computing to the cloud 

with Apache Hama and many people are using Rootbeer over the Internet. 

 

1.3.1 Disclaimer 

 With all the great things about Rootbeer that we have just spoken about, we want to 

mention that it does have some faults. The major fault at this time is getting the code to 

compile due to class loading issues. Simple programs work well, but very complicated 

programs run into problems. In the Welch Lab example, we solved this by created a 

separate JAR file for all of the GPU code and compiled it separately from the CPU code. This 

JAR also requires a main method that makes calls tothe every Java method inside the GPU 



 

 

16 

JAR. After this was done, we have seen very few bugs with the actual serialization and 

CUDA code generation. We do not guarantee that Rootbeer works perfectly in industrial 

settings and cannot be held accountable for any defects in the software. 

 

1.4 Welch Lab Case Study 

 In a case study with the Welch Lab, ourthe research focused on accelerating Hidden 

Markov Model (HMM) computations using Rootbeer. The original requirements were to 

run a training phase for HMMs 308 times with each item requiring 39 minutes of 

computation time. Computing out the time, this takes approximately 8.3 core-days. We 

have accelerated this computation 102.7x and now we require 22 seconds each, giving an 

accelerated time of 1.992 hours total time. This computation is using 2240 HMM states 

with a signal length of 8000 doubles. The full signal is 62500 doubles and will benefit from 

this proven speedup. In addition, an analysis using wavelet transforms of raw image frames 

will more likely be possible using the HMM GPU code and a 16 GPU system. More details on 

this program are contained in Section 7.2. 

 

1.5 Literature Review 

Graphics Processing Units and the associated programming frameworks have a history 

starting around 1982.  The very first GPUs supported acceleration of drawing lines and 

other simple graphics [3, 34, 40]. Using this hardware, the CPU could specify the endpoints 

of a line or the coordinates of a rectangle and the GPU would compute the pixels to fill and 

then fill them.  While this was executing the CPU could complete other work. 



 

 

17 

GPU hardware continued to advance and in 1990 [10] it was shown that motion of a 

polygon shaped robot moving through a 2D space could be completed on the GPU using 

flood-fill while the CPU was running. This was one of the first times that the GPU hardware 

was used for computations other that drawing pixels directly to the display. 

Between 1987 and 2006, gaming and CAD programs gave GPU manufactures a market 

to continually improve their architecture.  

Around 1992, Wolfenstein 3D [11] was one of the original first-person shooter games 

created by John Carmack [12] and ID software. In the game, the players moved through a 

3D world on the computer. This first version used ray casting to make a renderer that could 

effectively draw the world on an Intel 286 computer [13]. At about the same time, OpenGL 

1.0 was first released for 3D gaming and CAD applications. OpenGL initiated an open 

standard for programmatically drawing 3D images on a frame buffer using a GPU. 

The next game released by ID software was Doom in 1993 [14] and this game had more 

complicated graphics that could be drawn because of more powerful hardware. The heights 

of rooms could change, walls did not need to be rectangular, surfaces were texture mapped 

and complex lighting was used.  Later, in 1996, Quake was released. The graphics were 

again improved and one year later, GLQuake was released. The first release of GLQuake by 

John Carmack would only run on a 3dfx Voodoo Graphics Card. Combining hardware 

accelerated OpenGL with transparent water and other lighting effects made the game quite 

popular. 3dfx went bankrupt in 2002 [15] and most of its assets were bought by NVIDIA. 

The source code to GLQuake was released in 1999 [16] and is available in the Ubuntu 

Repositories. 



 

 

18 

After the demonstration of transparent water using OpenGL in 1996, a researcher 

demonstrated that Voronoi diagrams could be computed using graphics hardware [17] in 

1999.  A similar idea to use the GPU for general purpose computation was published in 

2002 with physics equations running on coupled map lattice cellular automata [18]. These 

several examples listed in this document show that early drawing primitives provided by 

graphics cards can do general-purpose computation.  For more information regarding early 

uses of general-purpose programing on GPUs and a longer literature review, see the work 

by Dr. John Owens [19]. 

During the time between 2003 and 2007, improvements were made to OpenGL to 

support more advanced programmable shading. 

In 2006, general-purpose computation on GPUs was enabled with a C programming 

language from NVIDIA called CUDA [20]. This was the first general-purpose language for 

GPGPU programming. Shortly before CUDA was released, AMD launched a GPGPU 

programming language, except that it was difficult to use because it was an assembly-based 

language. Later in 2009, a new programming language called OpenCL [21] was introduced 

that aimed to be a vendor-neutral programming language for GPUs and accelerators. Both 

AMD and NVIDIA devices now support the OpenCL programming language. However, 

Rootbeer only works with NVIDIA CUDA because some required features for Rootbeer are 

not supported in OpenCL.  

In 2007, our work with tomography and CUDA began. We started by testing small 

applications on the GPU card and made sure that the computations were running on the 

hardware. Then we started to work on real applications. At this time we were 

programming in CUDA. 



 

 

19 

In 2009, JCuda [22] was released and allowed a developer to program GPUs from inside 

Java using provided JNI mappings to the NVIDIA driver. However, the developer still 

needed to convert complex Java objects into arrays of primitive types and write CUDA 

kernel code saved in a string. Later in 2009, JOCL [23] was released by the same author as 

JCuda with a similar API, except OpenCL was supported instead of CUDA. In 2011, JavaCL 

[24] was released and is similar to JCuda and JOCL except that is uses JNA rather than JNI 

generated using JNAerator. 

Work began appearing in 2008 that attempts to execute Java on the GPU. In 2008, the 

Master’s Thesis titled “Automatic Parallelization for Graphics Processing Units in 

JikesRVM” [25] focused on converting the outer loops of a method into a kernel using 

automatic parallelization. Here, known compiler algorithms where implemented and 

combined with original algorithms to make Java run on the GPU in parallel. The algorithms 

included are “Classification of Loops”, “Identifying Loop Types” and more. Special 

treatment for Java was done for “Arrays”, “Inter-array Aliasing”, “Intra-array Aliasing”, 

“Bound Checks”, and “Recovering Control Flow”. Much of the effort was spent on automatic 

parallelization and the support for advanced GPU programming features needed to support 

our HMM Learning example are not present. The code is not available for download and the 

author mentions that the code quality is prototype.  

After the work with JikesRVM, in June 2010, Peter Calvert published his dissertation 

titled “Parallelization of Java for Graphics Cards” [26]. Again, the work focused on 

converting the outer loops of a method into a kernel using automatic parallelization. The 

user can annotate loops and the system can extract simple loops with simple increment 

variables. Not all loops can be extracted with this system. The author of this system 



 

 

20 

implemented known compiler algorithms for “Code Graph”, “Type Inference”, “Dataflow 

Analysis”, “Increment Analysis”, “May-Alias”, “Loop Detection”, “Loop Trivialization” and 

“Dependency Analysis”. The work is available for download, but the Matrix Multiply test 

does not pass our correctness test, so the speed cannot be compared to Rootbeer. The 

authors of this work claims that the “developer does not need to consider the specification 

of their specific graphics card, or have knowledge of the threading model”.  As in the 

JikesRVM work, our system takes the opposite approach and requires the developer to be 

aware of the programming model and hardware details to enable advanced GPU 

applications such as the HMM Learning example. 

Later in July 2011, Aparapi [27] was released and is similar in programming ideology as 

to Rootbeer. However, Aparapi only allows the developer to configure global thread count 

and not both thread count and block count. This points to a fundamental misunderstanding 

of shared memory functionality and our shared memory test example failed to compile. We 

modified their compiler output for our shared memory test and made it pass. Aparapi 

matrix multiple using shared memory was slower than Aparapi without using shared 

memory and both were about 23x slower than Rootbeer matrix multiply using shared 

memory. Aparapi supports syncthreads and atomicAdd, however atomicAdd was 

implemented with Java synchronization, not CUDA atomic functions and is most likely 

slower because it is farther from the hardware. The CUDA atomicAdd, which Rootbeer uses, 

utilizes hardware in the GPU. Furthermore, Rootbeer provides support to configure 

register count along with supporting almost all of the atomic and synchronization functions 

from CUDA. In addition, Rootbeer has much better method, field and object support than 

Aparapi.  



 

 

21 

Rootbeer was released in 2012 [25] and is the only compiler in the related work that 

supports arbitrary execution on Java objects, methods and fields on GPUs. In addition, it is 

the most complete system for expert usage scenarios due to the support of shared memory, 

block / thread count and register count.  Rootbeer supports using multiple GPUs within the 

same system using a context API and the cache configuration can be chosen as either 

PREFER_SHARED or PREFER_L1.  Rootbeer contains support to use the CUDA atomic and 

synchronization functions listed in figure 1.5.1 below.  

CUDA Atomic Function Description 
syncthreads Synchronize threads within a block 
syncthreadsCount Synchronize threads within a block  and return the number of 

threads whose predicate is non-zero 
threadfenceBlock  All writes to shared and global memory before the instruction 

are seen before writes after the instruction for the current 
block 

threadfence All writes to shared and global memory before the instruction 
are seen before writes after the instruction for the current 
device 

threadfenceSystem All writes to shared and global memory before the instruction 
are seen before writes after the instruction for the current 
system 

atomicAdd 
atomicSub 

Reads an element from a Java array, adds or subtracts a given 
number, stores the result back into the Java array and returns 
the old value from the Java array. 

atomicExch Atomically exchanges two values in a Java array and returns 
the old value from the Java array 

atomicMin 
atomicMax 

Reads and element from a Java array, computes the min or 
max of the element and a given number and stores the result 
into the Java array. 

atomicCAS Executes an atomic compare-and-set operation using a Java 
array element, a compare value and a set value. 

atomicAnd 
atomicOr 
atomicXor 

Reads an element from a Java array, executes bitwise or, xor 
or and given a value and stores the result into the Java array. 
Returns the old value in the Java array.  

Figure 1.5.1 Atomic Functions from CUDA that Rootbeer Supports 
 

Rootbeer also supports removing exceptions and array bounds checks for speed once 

the program has been debugged. Primitive System.out.println is supported in Rootbeer for 



 

 

22 

debugging purposes. Without the advanced features of configuring shared memory, thread 

/ block count, register count and the atomic syncthreadsCount, our HMM Learning example 

that uses a global synchronization primitive will deadlock. Rootbeer is different from all 

other systems in that we aim to support advanced GPU algorithms and data structures. 

Programming with Rootbeer is as close as possible to programming with CUDA, except the 

developer has the additional support of Java object execution and serialization support. We 

find that by making the programming model as close to CUDA as possible, the most number 

of advanced GPU algorithms and data structures run with Rootbeer.  Rootbeer’s is 

categorized as production-beta, has extensive testing, and is freely available for download. 

Shortly after Rootbeer was released, Oracle announced project Sumatra [21] aiming to 

support GPUs from within the JVM. They were first working to compile Java Bytecode into 

PTX assembly and then were working on strategies for selection of which computations to 

offload to the GPU. Recently, however, Oracle and the OpenJDK community has stopped 

work on this project [28]. 

In August 2015, a paper was published titled “Boosting Java Performance Using 

GPGPUs” [29] that describes a framework called “Java Acceleration System” or JACC. This 

system is not available for download and the code is categorized as experimental in the 

paper.  This system uses tasks and task graphs that are specified by the developer to assist 

code generation and has comparable performance to Rootbeer.  However, the advanced 

GPU features such as shared memory, block / thread count, register usage and atomic 

functions are not supported, so examples like our HMM Learning example will most likely 

deadlock. 



 

 

23 

In September 2015 a paper was published titled “HJ-OpenCL: Reducing the Gap 

Between the JVM and Accelerators” [30] that focuses on automatic generation of OpenCL 

kernels and JNI glue code from a parallel for-all construct available from Habanero-Java 

(HJ).  In addition, the work uses HJ’s array_view language construct to efficiently support 

rectangular, multi-dimensional arrays on OpenCL devices.  In Peter Calvert’s Java-GPU, the 

problem of multi-dimensional arrays in low level Java Bytecode required custom 

algorithms to handle aliasing. Here the authors are requiring a language construct to be 

added around rectangular, multi-dimensional arrays if they are to be integrated with the 

“parallel for-all” type automatic parallelization. Rootbeer does not do automatic 

parallelization, so finding aliases of multi-dimensional arrays is not a problem and both 

rectangular and jagged multi-dimensional arrays are easily supported. The system uses the 

OpenCL code generation from Aparapi, therefore only two types of atomic and 

synchronization functions are supported (syncthreads and atomicAdd). Again, this system 

does not address the advanced GPU features such as shared memory, block / thread count, 

register usage and many atomic functions and examples like our HMM Learning example 

will most likely deadlock. 

There are a number of libraries to use GPUs including ArrayFire, MATLAB, cuDNN, 

cuFFT, NPP, cuBLAS and NVBIO. These are summarized in Figure 1.5.2 below. 

System / Library Description 
ArrayFire Open source library with many built in functions for math, signal 

and image processing. The company is also a vendor for GPU 
consultancy services. 

MATLAB MATLAB includes GPU accelerated versions of built in functions and  
Mathworks also distributes a number of toolboxes that contain 
custom kernels that accelerate common computations for many 
industries. MATLAB also allows a developer to run custom CUDA 
code from within a MATLAB script. 



 

 

24 

cuDNN NVIDIA GPU Deep Neural Network Library 
cuFFT NVIDIA GPU Fast Fourier Transform Library 
NPP NVIDIA Performance Primitives for Image and Signal Processing  
cuBLAS NVIDIA GPU BLAS Library 
NVBIO NVIDIA Accelerated C++ Framework for High-Throughput Sequence 

Analysis 
Figure 1.5.2 – Selected Libraries and Systems Supporting GPUs.  
 
 

When CUDA was first released, developers found that they needed to think in parallel to 

obtain significant speedups using GPUs. Early work demonstrated algorithms such as 

parallel reduce to solve problems such as array summation. Since then, more complicated 

parallel GPU algorithms and data structures have been published that can accomplish more 

complicated processing.  Examples of these are sorting, hashtables and GPU garbage 

collection using parallel prefix sum.  Listed below is a summary of the new parallel GPU 

algorithms and data structures adapted from three leading authors: Sean Baxter, Duane 

Merrill and John Owens. 

Algorithm Description 
Reduce Sum the elements of an array into a single value in parallel. [31] 
Scan Execute an operation on each element. Prefix Sum computes the 

sum of the current number plus the previous sum in parallel. [32], 
[33] and [34] 

Histogram Organize a sequence into bins such that the frequency of a range of 
values is counted  

Bulk Remove Remove elements in an array specified by indices [31] 
Bulk Insert Insert elements from one array into another array specified by 

indices [31] 
Merge Merge two arrays in parallel [31] 
Mergesort Sort an array in parallel O(nlgn) [31] 
Radixsort Sort an array in parallel O(kn) [35] 
Vectorized 
Sorted Search 

Run concurrent searches in parallel [31] 

Interval Expand Given counts and values, replicate each value count times and emit 
to the output [31] 

Segmented 
Reduce 

Parallel reduction over many irregular-length segments [31] 



 

 

25 

Graph BFS 
Traversal 

Traverse a sparse graph using breadth first search [36] 
 

GPU Hashtable Store elements in a set or map on the GPU with fast lookup and 
insert [37] 

GPU Garbage 
Collection 

Use prefix sum or histogram to accelerate garbage collection on 
GPUs [38] 

Figure 1.5.3 – Summary of some selected parallel GPU algorithms and data structures  

These algorithms can be implemented using Rootbeer given provided primitives and 

fused with sections of single-threaded CPU code to solve problems in areas such as medical 

imaging, image processing and bioinformatics along with many other diverse fields. 

Without using specific parallel algorithms a developer will often see a performance 

speedup of around a range of 10x for problems with little inherent parallel work. The 

developer must use some advanced parallel algorithm or data structure to achieve 100x 

speedups for all but the simplest problems. Given 448 cores in a Tesla C2050 device, a 

developer can approximately estimate 100x best-case speedup as part of resource planning 

to determine the number of GPUs that are needed in a multi-GPU system assuming the 

problem can be written in terms of parallel algorithms. Obtaining a speedup on the order of 

400x to 1000x is most likely infeasible with a Tesla C2050 based on the author’s 

experience. 

 

1.6. Summary of Results  

To summarize the performance of Rootbeer, the time to execute matrix multiply on 

a two-dimensional array for a small set of systems is given in Figure 1.6.1 below. An in-

depth discussion of the Rootbeer Shared example in the below study along with other 

performance results are listed in Chapter 7. The matrix multiply tested here was 

multiplication of two 2048x2048 matrices of type float. Figure 1.6.2 shows the test setup 



 

 

26 

used. Each test case was run eight times and the best elapsed time was taken to allow the 

JVM to effectively optimize code. The JVM can optimize methods for increased 

performance, but it can only use the optimized code after returning from the method. Long 

running methods, like matrix multiply, need to return from the method a few times to 

obtain best performance.  

Performance Test Case Elapsed Time Relative Speed 
Java4 27129 milliseconds 1x 
Java4 Transpose 3519 milliseconds 7.7x 
Rootbeer 636 milliseconds 42.7x 
Rootbeer Transpose 7379 milliseconds 3.8x 
Rootbeer Shared 286 milliseconds 94.9x 
CUDA 376 milliseconds 72.2x 
CUDA Transpose 7341 milliseconds 3.7x 
CUDA Shared 94 milliseconds 288.6x 
Aparapi 2205 milliseconds 12.3x 
Aparapi Transpose 8937 milliseconds 3.0x 
Aparapi Shared  2956 milliseconds* 9.2x 

Figure 1.6.1 – Summary Performance of Rootbeer and Competing Systems. (*) required 
manual editing of generated opencl code to pass. 
 
 
 

Test System Specifications 
CPU 4 core Xeon E5405 @ 2.00GHz with 16GB ram (DDR2 

@ 667 MHz) 
GPU 448 core Tesla C2050 @ 1.147 GHz with 3GB (384-bit) 

ram over PCI-e x16 Gen2 
Figure 1.6.2 – Test Setup used for Performance Comparisons 
 

 You can see in the above example that Rootbeer Shared is 94.9x faster than Java4 

and CUDA Shared is 288.6x than Java4. Rootbeer is built on top of CUDA, so it makes sense 

at this point that it is a bit slower. Aparapi is built on top of OpenCL but does not show 

significant speedups over Java4 in our tests. Aparapi Shared is an example that attempted 

to use OpenCL shared memory, but we needed to manually edit the generated OpenCL and 



 

 

27 

modify the Aparapi source code to make the test case pass. Aparapi Shared does not show 

significant speedup over Java4. A full description of each test case is listed with bullets 

below. 

 Java4 – Using four Java threads on the CPU desktop system to calculate the result of 

multiplying two 2048 by 2048 float matrices 

 Java4 Transpose – Similar to Java4, except that a transpose is done on the B matrix 

before multiplying to improve cache effects. The transpose time is not included in the 

timings. 

 Rootbeer – Use a simple Rootbeer programming setup to multiply 2048 by 2048 float 

matrices. No optimizations have been done, but parallelism has been used. 

 Rootbeer Transpose – Similar to Rootbeer, except that a transpose is done on the B 

matrix. 

 Rootbeer Shared – A highly optimized version of matrix multiply using Rootbeer and 

the shared memory (software defined cache). 

 CUDA – A matrix multiply written in CUDA to compare the results of raw CUDA to 

Rootbeer/CUDA. 

 CUDA Transpose – Similar to CUDA, except that a transpose is done on the B matrix. 

Again, the time to transpose is not taken into account. 

 CUDA Shared – A highly optimized version of matrix multiply using CUDA C and 

shared memory. 

 Aparapi – Use Aparapi to multiply two 2048 by 2048 matrices with no special 

optimizations. 



 

 

28 

 Aparapi Transpose – Similar to Aparapi, except that a transpose is done on the B 

matrix before multiplying. 

 Aparapi Shared – Using shared memory with Aparapi to compare Rootbeer and raw 

CUDA to Aparapi. 

  



 

 

29 

 
 
 

Chapter 2 
 
 
 
 
 
 
 
 
 

Technologies 
 
 
 
 

 
 
 

2.1 Introduction 

 In order to understand how Rootbeer works, you must be familiar with the 

technologies involved. Rootbeer uses the following technologies: 

1) Java Programming Language  

2) Java Bytecode  

3) Soot Java Optimization Framework  

4) Java Native Interface  

5) GPU Architectures 

6) CUDA Programming 

 



 

 

30 

The code for Rootbeer is written in the Java Programming Language (Java). It starts 

out by parsing Java Bytecode Class Files (class files) using the Soot Java Optimization 

Framework (Soot). To complete whole program analysis using less memory, class files are 

loaded using the custom Rootbeer Class Loader. Once the classes are loaded, Rootbeer uses 

the API of Soot along with Rootbeer code to generate serialization bytecode and CUDA 

code. Once everything is generated, it is packed into an output Java Archive (jar) including 

the Rootbeer Runtimes. When the program is run, Java Native Interface (JNI) is used to 

access the Rootbeer CUDA Runtime from within Java. All of these technologies will be 

discussed in the first part of this chapter and then an introductory view of GPU 

architectures and CUDA programming will be discussed.  

During the introduction to CUDA, it will be shown how Rootbeer gives assistance 

over CUDA and OpenCL. In Chapter 3 Rootbeer programming will be studied in detail. 

 

2.2 Java Programming Language 

 Rootbeer primarily is written in Java using Soot and the Rootbeer Class Loader. 

There is a small amount of JNI and CUDA code. The figure below shows the number of lines 

of code for each language. 

Component Lines of Code 
Rootbeer Product (Java) 15225 
Rootbeer Product (JNI) 626 
Rootbeer Product (CUDA) 3137 
RTAClassLoad (Java) 3502 
Rootbeer Testharness (Java) 12214 
Total 34704 

Figure 2.2.1 – Source Lines of Code Count in Rootbeer using SLOCCount 



 

 

31 

At this point, those proficient with the Java Programming Language or those more 

interested in the GPU aspects and contributions of this dissertation may skip to Section 2.4. 

Rootbeer can still be understood without reading the intervening sections. 

 

2.2.1 Java Programming Language Details 

The Java Programming Language was released in 1995 from Sun Microsystems 

under the direction of James Gosling [39]. It has since become the second most popular 

programming language in the world according to Langpop [40]. It has syntax similar to 

C/C++. Instead of compiling directly to assembly, Java compiles to Java Bytecode, which is 

run in a Java Virtual Machine (JVM). The JVM and associated libraries abstract away the 

operating system and processor so that a developer can write the code once and run the 

same binaries on Windows, Linux and Mac. The Java Programming Language is also used in 

the Android Operating System and some embedded devices, but Rootbeer does not run in 

these environments. 

 The Java Programming Language is statically typed with all objects deriving from 

java.lang.Object. Generics are supported through type erasure inside the Java Compiler 

(javac). Type erasure in Java is in contrast to the way generics are supported in C#. In Java, 

the generic types are checked by the javac compiler but then erased and replaced with 

instances of java.lang.Object in the bytecode. In C#, the generic types are compiled into the 

bytecode. Sun introduced generics into Java after the language had been released with a 

large standard library. Type erasure allowed them to reuse the entire standard library. On 

the one hand type erasure can enable easier reflection code and reuse of a standard library 

while on the other hand compiled types as in C# can offer better static analysis.  



 

 

32 

 Java cannot link directly with existing C/C++ code because the JVM only runs 

bytecode. It does this to keep the bytecode language simple and pure. Also, it allows the 

JVM to do more verification on the safety of the bytecode with respect to security and 

functionality. Such verifications include 1) a program cannot have a buffer overflow, 2) a 

program cannot make a pointer to an arbitrary, un-typed memory location without using 

unsafe code and 3) strong typing enforcement. We believe that due to the third aspect 

(strong typing) that Java is a good language for compiler research and prefer doing 

compiler work in Java over other languages like Python or JavaScript. 

To link native code with managed Java code, a developer must use JNI or one of the 

libraries built on top of JNI. Rootbeer has it’s own runtime that uses JNI and links to the 

CUDA GPU drivers to allocate GPU memory, copy memory and launch GPU tasks. 

 Below is a small Java program that is used to print the numbers zero through nine. 

We will compile this with javac and in the next section show the Java Bytecode for it. 

001  

002  

003  

004  

005  

006  

007  

public class PrintNumbers {  

  public void print(){  

    for(int i = 0; i < 10; ++i){  

      System.out.println(i);  

    }  

  }  

}  

Figure 2.2.1.1 – Source Code for PrintNumbers.java  
 
 After Java Bytecode, the discussion will move to JNI and then proceed to the Soot 

Java Optimization Framework, the Rootbeer Class Loader and GPU architecture and 

programming. 

 

 

 



 

 

33 

2.3 Java Bytecode 

Those familiar with Java Bytecode or have more interest in the contributions of this 

dissertation, please skip to Section 2.4. Rootbeer can still be understood without reading 

Section 2.3.1. 

 

2.3.1 Java Bytecode Details 

 The Java Compiler converts Java Programs into Java Bytecode. Java Bytecode is a 

typed, stack based assembly language that is run inside of the JVM. The Hotspot Virtual 

Machine [41] starts running bytecode in an interpreter and when it notices that a method 

has executed many times or for a long duration, it compiles the method to assembly. This 

assembly code is then run directly on the CPU next time the method is needed.  

 A Java Bytecode file has three parts: 1) the header and class information, 2) the 

constant pool and 3) the methods. We will show short examples of all of these in this 

section’s tutorial. Appendix B contains a full listing. 

 It is important to note that the bytecode files are binary formatted and we are 

viewing them in human readable form after using javap. The command to generate the 

text-based format is also listed in Appendix B. 

You can see the full header and class information for our PrintNumbers.java file in 

Figure 2.3.1.1 below. The header includes the source file, the name of the class and the 

super class. It contains the major and minor version of the minimum Java Virtual Machine 

that this bytecode file was compiled for. 

 

 



 

 

34 

001  

002  

003  

004  

005  

Compiled from "PrintNumbers.java"  

public class PrintNumbers extends java.lang.Object  

  SourceFile: "PrintNumbers.ja va"  

  minor version: 0  

  major version: 50  

Figure 2.3.1.1 – Decompiled Java Bytecode Header and Class Information for 
PrintNumbers.java 
 
 After the header and class information, the bytecode file contains the constant pool. 

The constant pool for PrintNumbers.java is shown in Figure 2.3.1.2. It is an array of items 

that are all either a number, a string or possibly typed composite combinations of strings 

called methods, fields or classes. The numbers can be ints, longs, floats or doubles that 

would appear in the source code. There are no number constants in this constant pool. 

 Constant #1 (line 2) is a method identifier. When this method is called from the 

bytecode assembly, the file will contain an identifier specifying that the instruction is a 

method call with identifier equal to constant #1. In the binary format, the constant starts 

out with a type identifier for method and then contains two integers. One integer is to 

reference the declaring class of the method and the other is for referencing the method 

signature.  

001  

002  

003  

 

004  

005  

006  

007  

008  

009  

010  

011  

012  

013  

014  

015  

016  

017  

018  

019  

  Constant pool:  

const #1 = Method  #5.#1 4; // java/lang/Object."<init>":()V  

const #2 = Field  #15.#16;  

    // java/lang/System.out:Ljav a/io/PrintStream;  

const #3 = Method  #17.#18; // java/io/PrintStream.println:(I)V  

const #4 = class  #19; // PrintNumbers  

const #5 = class  #20; // java/lang/Object  

const #6 = Asciz  <init>;  

const #7 = Asciz  ()V;  

const #8 = Asciz  Code;  

const #9 = Asciz  LineNumberT able;  

const #10 = Asciz  print;  

const #11 = Asciz  StackMapTable;  

const #12 = Asciz  SourceFile;  

const #13 = Asciz  PrintNumbers.java;  

const #14 = NameAndType  #6: #7; // "<init>":()V  

const #15 = class  #21; // java/lang/System  

cons t #16 = NameAndType  #22:#23; // out:Ljava/io/PrintStream;  

const #17 = class  #24; // java/io/PrintStream  

cons t #18 = NameAndType  #25:#26; // println:(I)V  



 

 

35 

020  

021  

022  

023  

024  

025  

026  

027  

const #19 = Asciz  PrintNumbers;  

const #20 = Asciz  java/lang/Object;  

const #21 = Asciz  java/lang/System;  

const #22 = Asciz  out;  

const #23 = Asciz  Ljava/io/PrintStream;;  

const #24 = Asciz  java/io/PrintStream;  

const #25 = Asciz  println;  

const #26 = Asciz  (I)V;  

Figure 2.3.1.2 – Decompiled Java Bytecode Constant Pool for PrintNumbers.java 
 

We can see from the constant pool listing that the method constant 1 has a bytecode 

signature of “java/lang/Object."<init>":()V”. Shown in Figure 2.3.1.3 below is the method 

signature pulled apart.  

Constant #5 is a class with a name of constant #20, which is a string containing 

“java/lang/Object”.  Therefore this method is a method that is part of the java.lang.Object 

class. The other part of the signature contains Constant #14, which is a NameAndType that 

links to #6 and #7. Constant #6 is a string “<init>” and Constant #7 is a string “()V”. The 

method name “<init>” is a special method name for a constructor.  The string “()V” is a 

method type signature that specifies that the method takes no arguments “()” and returns 

void “V”.  

 Overall, constant #1 references the void constructor of java.lang.Object. It is 

worthwhile to note here that strings in the Java class file format first begin with an integer 

specifying the length of the string followed by the actual string. This is beneficial over using 

null terminated strings while parsing class files because a single buffer can be allocated 

once for the string and the string never needs to be copied from a larger buffer. 

 
#1 = Method #5.#14 = “java/lang/Object."<init>":()V” 

 
 

#5 = class #20; 
 

 
#14 = NameAndType #6:#7; 

 



 

 

36 

 
#20 = Asciz java/lang/Object; 
 

 
#6 = Asciz <init>; 

 

 
#7 = Asciz ()V; 

Figure 2.3.1.3 – Java Bytecode Method Signature Chart 
 

 There are more types to be aware of than what have been included in this small 

example. We show the full listing from Oracle’s website [42] in the table below. The types 

for java.lang.String and double array are examples. L and [ are special first characters. After 

an L any class named can be listed, followed by a semicolon and after a [ and number of [‘s 

can be included followed by a regular type identifier naming either a primitive or reference 

type. 

Signature Type 
Z Boolean 
B Byte 
C Character 
S Short 
I Integer 
J Long 
F Float 
D Double 
Ljava/lang/String; java.lang.String 
[D One Dimensional Double Array 
[[D Two Dimensional Double Array 

Figure 2.3.1.4 – Java Bytecode Types 
 
 Each class file is an independent entity that is produced by javac. The javac compiler 

verifies that the referenced strings exist in the class path and these strings are verified 

again when the JVM loads the code for execution. If they have been changed in an invalid 

way, the JVM will throw a specific exception that tells what the problem is. The Rootbeer 

Class Loader has the ability to remap calls to a class by changing the strings in the class 

files. This allows Rootbeer to substitute class files that contain native code to pure Java 

versions that can be transformed into CUDA code.  



 

 

37 

 Now that we have seen the constant pool and have learned a little bit about the 

constant strings, let’s look at some bytecode assembly. Below in Figure 2.3.1.5 is the 

constructor for PrintNumbers. Javac created this automatically for us.  At line 3 the 

decompilation by javap shows that there is a max stack size of one, one local and one 

argument. 

 In the bytecode assembly, there are no arguments to methods. Arguments are 

passed into a method by the JVM through locals. Locals in bytecode are untyped and are 

global to a method. They are referenced through numbers and can have different types at 

different times, if a single local is reused. 

 The zeroth local in an instance method is the self-reference for the current class 

(this pointer). The zeroth argument to the method is passed into the first local, and the first 

argument is passed into the second local, etc. 

 On line 4 in the assembly below, there is a bytecode instruction “aload_0”. This 

instruction loads the object from local zero onto the data stack. At this point, local zero is 

still the “this” pointer for the currently running class. Then on the next line the code 

specifies “invokespecial #1”. This instruction will take the current object from the top of 

the stack (the “this” pointer) and call the method #1 (java.lang.Object constructor). Then 

return is executed. That is a simple constructor calling the super class constructor. Notice 

again that in the actual bytecode, the objects in the locals and stack are untyped. Rootbeer 

does not directly operate on Java Bytecode; instead it uses the Soot Jimple IR, which gives 

much more information. Jimple will abstract away the data stack and provide a typed, 

three-address, form. We will show this later in Section 2.4. 



 

 

38 

001  

002  

003  

004  

005  

006  

public PrintNumbers();  

  Code:  

   Stack=1, Locals=1, Args_size=1  

   0:  aload_0  

   1:  invokespecial  #1; //Method java/lang/Object."<init>":()V  

   4:  return  

Figure 2.3.1.5 – Decompiled Java Bytecode for PrintNumbers Constructor 
 
 To get a better idea about how bytecode works, there is a longer example below. 

This example prints the numbers zero through nine to the console. We have commented 

the instructions in a chart in Figure 2.3.1.7. You can read Figures 2.3.1.6 and 2.3.1.7 

carefully and notice that there are no loops, only ifs and jumps. 

001  

002  

003  

004  

005  

006  

007  

008  

009  

010  

011  

012  

013  

014  

public void print();  

  Code:  

   Stack=2, Locals=2, Args_size=1  

   0:  iconst_0  

   1:  istore_1  

   2:  iload_1  

   3:  bipush    10 

   5:  if_icmpge 21 

   8:  getst atic #2; // java/lang/System.out:Ljava/io/PrintStream;  

   11: iload_1  

   12: invokevirtual #3; // java/io/PrintStream.println:(I)V  

   15: iinc  1, 1  

   18: goto  2 

   21: return  

Figure 2.3.1.6 – Decompiled Java Bytecode for PrintNumbers Print Method 
 

Location Instruction Explanation 
0: iconst_0 Load an integer constant zero onto the 

data stack 
1:  istore_1 Store the integer from the top of the 

data stack into local 1 (this is the index 
variable for the loop) 

2:  iload_1 Load the integer from local 1 onto the 
top of the data stack 

3:  bipush 10 Push a signed, 8-bit byte onto the stack. 
This is the 10 used to specify the end of 
the loop iteration 

5:  if_icmpge 21 Pop two elements from the stack. If the 
first one is greater than or equal to the 
second one, jump to location 21. 

8:  getstatic #2 Get the static field System.out and place 
it on the data stack 



 

 

39 

11: iload_1 Load the integer from local 1 onto the 
top of the data stack 

12:  invokevirtual #3 Pop the arguments and object from the 
stack. Call println on the System.out 
object passing in the argument. 

15:  iinc 1, 1 Increment the integer in local one by 
one count 

18:  goto 2 
 

Jump to location 2 

21:  return 
 

Return from the method 

Figure 2.3.1.7 – Explanation of Print Bytecode Assembly 
 
We have seen in this section a short tutorial on Java Bytecode. The research 

mentioned that Rootbeer operates on a higher level IR called Jimple provided by Soot. The 

next section is devoted to describing Soot and that IR. 

 

2.4 Soot Java Optimization Framework 

If you are familiar with the Soot Java Optimization Framework or are more 

interested in the GPU aspect of this dissertation, please skip to Section 2.6. However, if you 

want to understand the RTAClassLoader that was added to Soot as part of this dissertation, 

it may help to read Section 2.4.1. 

 

2.4.1 Soot Java Optimization Framework Details 

The Soot Java Optimization framework [43] can read Java Bytecode and convert it 

into Jimple. Jimple is a typed, three-address, intermediate representation. To obtain Jimple, 

Soot abstracts away the stack, creates new locals representing stack locations and then 

flows types from known locations into unknown locations using a fixed point. We 

discovered this while fixing some bugs in Soot that were important to Rootbeer. A 



 

 

40 

developer can then do analyses on the higher-level form that contains more type 

information. After analysis, the Jimple can be translated back to Java Bytecode and run in a 

Java Virtual Machine. Compared to two other Java Bytecode analysis frameworks (BCEL 

[44], ASM [45]), Soot is the only system that can provide a typed, three-address form that 

can be manipulated. Compared to WALA [46] and JChord [47], Soot has a more active 

community and a larger analysis library. Soot is widely used by security researchers 

studying Android bytecode and Java based websites. We have added a new class-loader to 

Soot that is 10x faster so our compilation of whole-programs can complete in a reasonable 

time. Please see Chapter 4 for details on the new class-loader, optimizations done and 

performance results. During this dissertation, this research contributed nine bug fixes that 

have been accepted into the Soot master branch. 

 Rootbeer uses Soot to inspect Jimple to find instances of the Kernel interface and 

cross-compiles instructions to CUDA C. It then searches for types used on the GPU and 

generates serialization Jimple code to move Java State to GPU memory. The Jimple is 

translated down to Java Bytecode and packed in an output Java Archive (jar). 

Soot provides a programmatic API for manipulating Jimple from Java and also can 

emit a text-based form. Below is an example of PrintNumbers.jimple. 

 At line 1 you can see that the file declares a public class that derives from 

java.lang.Object. There are two methods, the constructor and “print”. Notice that in the 

constructor at line 5, the local has a name (r0) and a type (PrintNumbers). This is an 

enhancement from what is found in the Java Bytecode. In the bytecode there are no types 

for locals but they are added by Soot for the Jimple format.  

 



 

 

41 

001  

002  

003  

004  

005  

006  

007  

008  

009  

010  

011  

012  

013  

014  

015  

016  

017  

018  

019  

020  

021  

022  

023  

024  

025 

026  

027  

028  

029  

030  

031  

032  

033  

034  

public class PrintNumbers extends java.lang.Object  

{  

  public void <init>()  

  {  

    PrintNumbers r0;  

 

    r0 := @this: PrintNumbers;  

    specialinvoke r0.<java.lang.Object: void <init>()>();  

    return;  

  }  

 

  public v oid print()  

  {  

    PrintNumbers r0;  

    int i0;  

    java.io.PrintStream $r1;  

 

    r0 := @this: PrintNumbers;  

    i0 = 0;  

 

  label0:  

    if i0 >= 10 goto label1;  

 

    $r1 = <java.lang.System: java.io.PrintStream out>;  

    virtualinvoke $r1.<java.io.PrintSt ream: void  

      println(int)>(i0);  

    i0 = i0 + 1;  

    goto label0;  

 

  label1:  

    return;  

  }  

}  

Figure 2.4.1.1 – Decompiled Jimple for PrintNumbers.java 
  

You can see the following identity statement at line 7. Identity is different than 

assignment because of the way method arguments are handled in the bytecode. In Jimple, 

the first identity statement in a method must reference this and all arguments must be 

assigned to locals. This is to make lowering to Java Bytecode easier. (Remember there are 

no parameters in bytecode, everything is passed as locals, so Soot’s requirement is due to 

this). 

 

r0 := @this: PrintNumbers;  
 

Figure 2.4.1.2 – Identity Statement in Jimple 



 

 

42 

 The call to the super class constructor from line 8 is listed below. This time the stack 

has been abstracted away and you can clearly see that the specialinvoke is invoked on r0. 

The method signatures are also different than Java Bytecode signatures. 

 
specialinvoke r0.<java.lang.Object: void <init>()>();  

 
Figure 2.4.1.3 – Special Invoke in Jimple 

 The method signature has the 1) declaring class, 2) return type, 3) method name 

and 4) parameter types. The method signature is broken down in Figure 2.4.1.4 below. 

 
<ja va.lang.Object: void <init>()>  

 
 

1) Declaring Class:  
 

 
java.lang.Object 

 
2) Return Type:  

 

 
void 

 
3) Method Name:  

 

 
<init> 

 
4) Parameter Types:  

 

 
none 
 

Figure 2.4.1.4 – Method Signature for Object Constructor in Jimple 

 There are a few more things to talk about for this Jimple file. First, the “if” 

statements explicitly show the operands and locations have been substituted with labels. 

Second, there is a field reference and assignment to local $r1 shown below. 

 

$r1 = <java.lang.System: java.io.PrintStream out>;  

 
Figure 2.4.1.5 – Field Reference in Jimple 

 The statement is an AssignStmt with left hand and right hand sides. The left hand 

side is a local named $r1 with ‘$’ to note that the local was pulled from the data stack. The 



 

 

43 

right hand side is a field reference. The field reference signature contains the 1) declaring 

class, 2) the field type and 3) the field name. This is shown in detail in the figure below. All 

of the information for a field is directly in Java Bytecode, no additional analysis besides 

formatting is done in Soot. 

 
<java.lang.System: java.io.PrintStream out>  

 

 
1) Declaring Class:  

 

 
java.lang.System 

 
2) Field Type:  

 

 
java.io.PrintStream 

 
3) Field Name:  

 

 
out 

Figure 2.4.1.6 – Field Signature for System.out in Jimple 

When writing out to Java Bytecode, any field or method signature that may have had 

its signature changed will automatically be updated in the new constant pool. 

The abstraction of the stack into typed locals and methods with parameters makes 

the Jimple IR much easier to work with than Java Bytecode. This research started out 

creating Rootbeer with Apache Byte Code Engineering Library (BCEL) [44] in 2008. BCEL 

leaves the instructions as low-level bytecode assembly. It was quickly determined that we 

needed more information about static types and Soot has served this purpose very well. 

While we are still on the topic of Java Bytecode, we will quickly talk about Java 

Native Interface (JNI). You will see that Java Bytecode signatures and types are identical to 

the API provided to access Java objects from C programs. After completing the introduction 

to JNI, then CUDA programming and the NVIDIA GPU architectures will be covered.  

 



 

 

44 

2.5 Java Native Interface 

If you are familiar with the Java Native Interface or are more interested in the GPU 

aspect of this dissertation, please skip to Section 2.6. You can still understand Rootbeer 

without reading Section 2.5.1. 

 

2.5.1 Java Native Interface Details 

 Java Native Interface (JNI) allows a Java Program to access custom C methods from 

within Java. Java Bytecode is completely pure: the only thing existing in the assembly 

language format beyond the needs for pure computation is a simple flag specifying that a 

method is native. There are no special assembly instructions for accessing the world 

outside of the Virtual Machine. Support for things like the operating system, file system and 

sockets are provided by handwritten native methods provided by the Java Runtime Classes.  

Rootbeer uses JNI to access the CUDA API. With JNI you must compile a binary for 

each operating system and architecture. Rootbeer compiles binaries for 

windows/linux/mac supporting x86 and x86_64 architectures and includes them in the 

Rootbeer.jar distribution. Rootbeer selectively unpacks the appropriate binary at runtime 

and stores it in the hidden rootbeer folder in the user’s home directory. 

 To start programming with JNI, a developer will write Java code that contains at 

least one method decorated with the native keyword. A simple Java program that prints a 

string using a native method is shown below. It is advisable to keep native methods private 

with a public wrapper in the case that the public interface changes. 

001  

002  

003  

004  

public class PrintString {  

 

  private native void print(String str);  

 



 

 

45 

005  

006  

007  

008  

009  

  public static void main(String[] args){  

    PrintString printer = new PrintString();  

    printer.print(args[0]);  

  }   

}  

Figure 2.5.1.1 – Print Strings using a Native Method in Java 
 
 The above example is compiled with javac to produce a Java Class File 

(PrintString.class). Then we run the class file through javah to produce the header file 

below (the full command is in Appendix C.) 

001  

002  

003  

004  

005  

006  

007  

008  

009  

010  

011  

012  

013  

014  

015  

016  

017 

018  

019  

020  

021  

/* DO NOT EDIT THIS FILE -  it is machine generated */  

#include <jni.h>  

/* Header for class PrintString */  

 

#ifndef _Included_PrintString  

#define _Included_PrintString  

#ifdef __cplusplus  

extern "C" {  

#endif  

/*  

 * Class:     PrintString  

 * Method:    print  

 * Signature: (Ljava/lang/String;)V  

 */  

JNIEXPORT void JNICALL Java_PrintString_print  

  (JNIEnv *, jobject, jstring);  

 

#ifdef __cplusplus  

}  

#endif  

#endif  

Figure 2.5.1.2 – Java Native Interface Header File Generated with javah 
 

After the header file is created, we create the source C file shown below. You can see 

at line 8 that we use GetStringLength provided by JNI to get the length of the Java String 

(typed as jstring). Then on the next line we use malloc from the standard C library. Once we 

have allocated an array of the appropriate size, we use GetStringUTFRegion (again from 

JNI) to transfer a region of the Java String to our native string. Then we print the string and 

finally free the native memory. 

001  

002  

003  

#include "PrintString.h"  

#include <stdio.h>  

#include <stdlib.h>  



 

 

46 

004  

005  

006  

007  

008  

009  

010 

011  

012  

013  

 

JNIEXPORT void JNICALL Java_PrintString_print(JNIEnv * env, 

jobject thisref, jstring str)  

{  

  int len = (*env) - >GetStringLength(env, str);  

  char * nstr = (char *) malloc(sizeo f(char) * len);  

  (*env) - >GetStringUTFRegion(env, str, 0, len, nstr);  

  printf("%s \ n", nstr);  

  free(nstr);  

}  

Figure 2.5.1.3 – Java Native Interface Source Code to Print a String to the Console 
 
 After building a shared object, dylib or dll, (Appendix C) one more thing needs to 

happen before running JNI code from Java. Change the PrintString Java code to load the 

native library. This is shown in Figure 2.5.1.4 below. Notice at line 6 a new File object is 

made pointing to “print_string.dylib” and then it loads the file on the next line with 

System.load. An absolute path is required for System.load and the File object can return 

this from a relative path. 

001  

002  

003  

004  

005  

006  

007  

008  

009  

010  

011  

012  

013  

014  

015  

016  

import java.io.File;  

 

public class PrintS tring {  

 

  public PrintString(){  

    File library = new File("print_string.dylib");  

    System.load(library.getAbsolutePath());  

  }  

   

  private native void print(String str);  

   

  public static void main(String[] args){  

    PrintString printer = new Print String();  

    printer.print(args[0]);  

  }  

}  

Figure 2.5.1.4 – Loading a Native Library in Java 

 Up to this point, a complete example has been shown that can print a Java String 

using native strings and libraries. Rootbeer also calls Java methods from JNI and an 

example of this without using method caching is shown below. The Rootbeer native driver 

caches methods by saving method descriptors for later use. 



 

 

47 

 

001  

002  

003  

004  

005  

006  

007  

008  

009  

010  

011  

  jclass mem _class;  

  jmethodID get_address_method;  

  jlo ng * cpu_object_mem ;  

 

  mem_class = (*env) - >FindClass(env,  

    “org/trifort/rootbeer/runtime/FixedMemory");  

  get_ address_method = (*env) - >GetMethodID(env, mem _class,  

    "getAddress", "()J");  

 

  cpu_object_mem = (void *) (*env) - >CallLongMethod(env,  

    object_mem, get_address_method);  

Figure 2.5.1.5 – Java Native Interface Code to Call a Method 

 We also included in the table below “jobject”. This is the JNI type for a Java Object. 

Our code above uses FindClass to obtain the jclass. Once we have the jclass we use 

GetMethodID to obtain the jmethodID. Notice how the class descriptor passed into 

FindClass and the method name and signature passed into GetMethodID are the same 

protocol used inside the Java Bytecode Constant Pool discussed in Section 2.3. 

Type Description 

jclass Represents a Java Class. Once the class description object has 
been retrieved from inside the JVM, we can use it to get a 
jmethodID 

jmethodID Represents a Java Method. Once the method identifier object 
has been retrieved, we can use it to call a method. 

jlong We keep handles to native buffers inside long fields in Java. A 
64bit long can be cast to any pointer type on both 32 and 64 bit 
systems. 

jobject Represents a Java Object accessible from JNI to call methods 
and retrieve fields. 

Figure 2.5.1.6 – Java Native Interface Types used in Rootbeer 

 Included in the JNI API are methods like CallVoidMethod, CallObjectMethod and 

CallByteMethod to distinguish the return type of the Java Method. There is one method per 

Java type. Also there are methods to get and set fields, among other things. 

 This wraps up the discussion on Java. Two very small examples of the quality have 

been seen: strings are stored smartly and class files use the same signatures as JNI. While 



 

 

48 

improving Soot, we looked at the code of the Hotspot JVM and it was clear that there are 

many other examples of quality in the JVM. The 500k lines of code program are very clean 

and our impression is that Hotspot has some of the most expert compiler engineers in the 

world. 

 Now the talk turns to GPU Architectures and CUDA programming. After seeing how 

to program GPUs with CUDA, the document shows the improvements that Rootbeer brings 

in Chapter 3. 

 

2.6 GPU Architectures 

When we first began evaluating architectures to accelerate our tomography 

application we studied GPUs, FPGAs and the Cell Broadband Engine. The problem had 

many floating-point calculations and existing FPGAs could only fit a handful of floating 

point units on a single device. Therefore it was concluded that FPGAs were not suitable for 

high performance floating point calculations. The Cell Broadband Engine was studied and it 

was found that a 6x speedup easily could be obtained with the possibility of more if the 

128-bit vector instructions were used. The physicists we worked with were looking for a 

speedup of around 100x with floating point data so we decided to focus attention to GPU 

processors because they had more non-vectorized floating point units to attempt to 

support this.  

The discussion will focus on NVIDIA GPU architectures and optimization because of 

the in-depth work we have accomplished using these devices. Specifically, we will be 

talking about an NVIDIA Tesla C2050 GPU, the device purchased. A block-level diagram of 

the C2050 is shown in Figure 2.6.1 below. The CPU acts as the host to the GPU, which acts 



 

 

49 

as the device. Before launch, data is transferred across the PCI-express bus from the CPU 

RAM to the GPU RAM. Once the needed data is in the GPU RAM, the CPU host issues control 

signals to the GPU device driver that specifies the GPU entry point and how many blocks 

and threads to use for the current computation. 

The Tesla GPU receives these commands, loads the instruction code from GPU RAM 

and starts the computation. The Tesla C2050 GPUs have 14 Streaming Multiprocessor (SM) 

units, each with 1 Instruction Fetch (IF) unit and 8 arithmetic/logic cores. The device 

fetches one instruction and executes it on 8 arithmetic/logic cores at the same time, 4 

times. This gives the view that there are 32 threads running on a single SM at a time and, in 

reality, that is pretty close to the fact. Eight are running at once and over four clock cycles 

one instruction fetched is run 32 times. Multiplying the 32 threads by 14 SMs gives 448 

cores as published in NVIDIA literature.  

  
Figure 2.6.1 – High-Level Architecture of NVIDIA GPUs 

The 32-thread warp size matches nicely with the number of memory banks. Global 

GPU RAM is banked into 32 banks that are each 4-bytes wide. This is designed so that each 

thread in a warp can fetch a 4-byte integer or float from a memory location proportionally 

 

CPU 

CPU RAM 

 

 

GPU 
 

GPU RAM 

 

 

 

IF 

 
 
 
 

 
 
 
 

SM 

 

IF 

 
 
 
 

 
 
 
 

SM 

 

IF 

 
 
 
 

 
 
 
 

SM 

 

IF 

 
 
 
 

 
 
 
 

SM 



 

 

50 

related to its thread index. In this way, all threads within a warp can issue requests at the 

same time. Otherwise, if the threads in a warp are not fetching in an aligned way, bank 

conflicts cause the memory requests to become serialized at the bank controller. 

The Tesla C2050 has 32768 registers (32-bit) per SM and 49152 bytes of shared 

memory. The software developer specifies the number of threads per block, which will be a 

group of threads sharing the shared memory. Once a block is placed on the SM for 

execution, it cannot be removed until the block is complete. There is no preemption by the 

scheduler and no yield keyword available in CUDA. In order for our global synchronization 

primitive to work in our HMM example (section 7.2), we needed to make sure that our 160 

threads fit into the SM at the same time. If not enough registers or shared memory were 

available to fit all blocks on all devices, then the latter threads would never signal in the 

barrier sync and deadlock would occur. Preemption was not included in the GPU because it 

would require even more registers to hold threads that could be waiting to run and then 

less die area would be available for arithmetic/logic units. 

Once the thread and block count has been optimized for register and shared 

memory space, additional optimizations are needed for memory reads and writes. A read 

from global ram requires 200-300 clock cycles and a read from L1 cache or shared memory 

requires 2-3 clock cycles. The developer can choose to give more of the 2-3-clock cycle 

memory to either L1 or shared. If the developer is not using shared memory algorithms, 

then they may want to favor the L1 cache and give less memory to the shared memory. 

Otherwise they can give more memory to the shared memory and program the software-

defined cache. This was done because the developer may better know how to place items in 

the shared memory than the hardware control can place items in the L1 cache. If the 



 

 

51 

developer can read items from the global memory and then place the items in shared 

memory and re-use the items in shared memory, this can save many 200-300 clock cycle 

fetches. In addition, if the developer reads global memory and properly takes into account 

the memory banks, the global fetch time will be closer to 200 clock cycles than to 300 clock 

cycles. All of the above settings are configurable from within Rootbeer. 

Finally, the developer needs to make sure that there are many threads running in 

order to get a speedup because the memory clock rate is slower, the GPU clock rate is 

slower and the GPU has a simplified execution pipeline compared to the CPU. 

Quickly comparing NVIDIA GPU devices with Intel MIC devices, it has been shown 

[48] while Intel MIC offers a promise of support for more branchy computations, the 

research has not developed to the point where it is feasible to obtain a speedup in 

applications such as HMM learning over GPUs. 

 

2.7 CUDA Programming  

To program with CUDA you need code for the GPU and code that controls the GPU 

from the CPU. The entry method to the GPU can be called the kernel function. We will talk 

about programming NVIDIA GPUs with CUDA. You can also program them with OpenCL, 

but for reasons discussed earlier we will not do that here. 

The document will show a basic GPU kernel that sets each element in an array to its 

index. Don’t expect a speedup from a computation as simple as this. Due to the architecture 

of the GPU and the fact that it connects via the PCIe bus means that 10 threads don’t 

necessarily give a 10X speedup. In Chapter 7 a discussion of GPU performance optimization 

will be given. 



 

 

52 

 Our basic GPU kernel written in CUDA shown is below. The function prototype 

starts out with a “__global__” intrinsic specifying that this method is an entry point to the 

GPU. The function basic_kernel returns void and accepts an array of integers called mem. At 

line 1, we obtain an index into the array using threadIdx.x. The index will be a different 

value for each thread in the computation. Then at the next line we set a single element of 

mem to equal its index. The programmer has to remember that each thread will have a 

distinct index so the outer loop of execution has been removed. For complicated 

applications, fully understanding concurrent behavior can require a developer who is very 

knowledgeable with concurrency. We refer the reader to “The Little Book of Semaphores” 

[49] for excellent coverage of parallel programming and semaphores. 

000  

001  

002 

003  

__global__ void basic_kernel (int * mem) {  

  int index = threadIdx.x;  

  mem[index] = index;  

}  

Figure 2.7.1 – Basic GPU Kernel 

 We want to point out here that when programming with Rootbeer, the developer 

still needs to understand the concurrent model of CUDA. Conversion of serial to parallel has 

not been done, we simply provide a substrate to program GPUs from Java. Given that Java is 

the second most popular programming language in the world [12], we think that this is 

valuable. Our work also opens up the opportunity to build robust auto-parallelization 

systems on top of Rootbeer since it is freely available and open source. 

Back to our CUDA example, we need to also create CPU code to control the GPU. This 

is shown in the figure below.  

000  

001  

002  

003  

004  

#include <stdio.h>  

 

int main(int argc, char * argv []) {  

  int num ;  

  int size;  



 

 

53 

005  

006  

007  

008  

009  

010  

011  

012  

013  

014  

015  

016  

017  

018  

019  

020  

021  

022  

023  

024  

025  

026  

027  

028  

029  

030  

031  

032  

033  

034  

035  

036  

037  

038  

  int * d_arr;  

  int * h_arr;  

 

  num = 10;  

  size = sizeof(int) * num;  

 

  //initialize host array  

  h_arr = (int *) c alloc( num, sizeof(int) );  

 

  //allocate GPU array  

  cudaMal loc((void **) &d_arr , size);  

 

  //copy memory from CPU array to GPU array  

  cudaMemcpy(d_arr, h_arr,  size, cudaMemcpyHostToDevice);  

 

  //launch the parallel tasks on the GPU  

  basic_kernel <<<1, num>>>(d_arr);  

 

  // block on kernel completion  

  cudaThreadSyn chronize();  

 

  //copy memory from the GPU array to the CPU array  

  cudaMemcpy(h_arr, d_arr, size, cudaMemcpyDeviceToHost);  

 

  //free the GPU memory  

  cudaFree(d_arr);  

 

  //print the results using CPU memory  

  for(int i = 0; i  < num; ++i){  

    printf(“mem[%d]: %d \ n”, i, mem[i]); 

  }  

 

  return 0;  

}  

Figure 2.7.2 – Basic GPU Launch Code 

 The first thing we do is to use calloc to malloc an array with ten elements that are 

initialized to zero. 

 

  //initialize host array  

  h_arr = (int *) calloc(num, sizeof(int) ) ;  

 
Figure 2.7.3 – Allocating Host Memory with calloc 

Then we allocate the GPU array with cudaMalloc. Notice how we must pass in a 

pointer to a pointer (&d_array) and the data type is “void **”. This is because the CUDA 

runtime must assign a pointer to d_array. If you haven’t programmed in C for a while or if 

you are, say, a biologist trying to write a genomic sequencing application, this might take a 



 

 

54 

little time to get right. And if your data types are arbitrary graphs of composite objects, you 

might have to work for a while to get everything right, and you will have to do this for each 

cut. This is where Rootbeer is useful, everything is done automatically for the developer. 

 

  //allocate GPU array  

  cudaMalloc((void **) &d_arr , size);  

 
Figure 2.7.4 – Allocating Device Memory with cudaMalloc 

After allocating one or more GPU arrays, we need to copy the CPU array to the GPU 

array. We need to pass in the device array, the host array, the size and 

cudaMemcpyHostToDevice to specify the direction. Again, if you are doing this for 

complicated objects, it can take time to write correct code to serialize the entire state into a 

set of closed arrays of primitive types. By closed we mean that no pointer points outside of 

our set of arrays. It can be complicated and time consuming to keep all allocations closed 

for collections such as a C++ map. 

 

  //copy memory from CPU array to GPU array  

  cudaMemcpy(d_arr, h_arr,  size, cudaMemcpyHostToDevice);  

 
Figure 2.7.5 – Copying CPU memory to GPU memory 

Now to be fair, we should mention that OpenACC allows a developer to use 

directives from C and Fortran to avoid all of these issues. But OpenACC is still limited when 

it comes to complex types. A major problem is that, in C, a deep copy cannot always be 

determined via the compiler. But Rootbeer operates on Java Bytecode and a deep copy can 

be determined via the compiler. 

After the cuda memory copy, we need to launch the kernel (named basic_kernel). 

We specify that there will be one block (more on this later) and num (or 10) threads. We 

are passing in the GPU array (d_arr) as the only parameter. 



 

 

55 

 
  //launch the parallel tasks on the GPU  

  basic_kernel <<<1, num>>>(d_arr);  

 
Figure 2.7.6 – Starting the basic_kernel on the GPU 

Since the CUDA runtime allows a user to run multiple kernels on multiple GPUs, we 

also need to remember to wait for the current GPU to complete operation. When using 

multiple GPUs, you can use the Streams API to specify what GPU you are waiting for. Below 

we show how to wait for the GPU to complete. 

 

  //block on  kernel completion  

  cudaThreadSynchronize();  

 
Figure 2.7.7 – Synchronize Threads 

After the GPU task is done, then copy the memory back from the GPU and use it on 

the CPU. Remember now to use cudaMemcpyDeviceToHost instead of 

cudaMemcpyHostToDevice to go in the opposite direction. 

 
  //copy memory from the GPU array to the CPU array  

  cudaMemcpy(h_arr, d_arr, size, cudaMemcpyDeviceToHost);  

 
Figure 2.7.8 – Copying GPU memory to CPU memory 

 Finally we need to free the GPU memory. It is simple in our example, but with even a 

slightly more complicated data structure, such as a two-dimensional array, the developer 

needs to first free all the inner arrays in a loop and then free the outer array.  

 

  //free the GPU memory  

  cudaFree(d_arr);  

 
Figure 2.7.9 – Releasing Device Memory with cudaFree 

 The previous text has shown the most basic example to program with CUDA. It may 

seem somewhat simple to use the special memory alloc functions, but when taking into 



 

 

56 

account changing thread and block count, the entire CPU part of the code can change when 

configuring parameters. We find that the automatic serialization support from Rootbeer 

can greatly enhance productivity when tuning parameters. 

  



 

 

57 

 
 
 

Chapter 3 
 
 
 
 
 
 
 
 
 

Rootbeer API 
Illustrative Example 

 
 
 
 
 

 
 
 

In this chapter we show how to program with Rootbeer. Then an example 

application will be given that will be used to demonstrate all aspects of Rootbeer 

compilation for later chapters. 

 

3.1. Rootbeer Programming 

Rootbeer supplies an interface called Kernel that developers implement to specify 

code that will possibly run on the GPU. After creating and compiling their application 

normally, developers also need to compile a packed Java Archive (jar) and then use the 



 

 

58 

Rootbeer Static Compiler to enable GPU usage. The packed jar must contain all classes 

reachable from the Kernel except Java Runtime Classes. The Kernel interface is shown 

below. 

001  

002  

003  

004  

005  

package org.trifort.rootbeer.runtime;  

 

public interface Kernel {  

  void gpuMethod();  

}  

Figure 3.1.1 - Rootbeer Kernel Interface 

The Kernel interface contains a single method called “gpuMethod”. It takes zero 

arguments and returns void. A developer specifies what data will be copied to the GPU by 

placing it in a field reachable from the implemented gpuMethod. All pure Java data types 

are supported in these fields. 

Now comes our application kernel code. We are going to write the same application 

from the CUDA programming example in Section 2.6, except we will be using Rootbeer and 

Java. 

001  

002  

003  

004  

005  

006  

007  

008  

009  

010  

011  

012  

013  

014  

015  

import org.trifort.rootbeer.runtime.Kernel;  

import org.trifort.rootbeer.runtime.RootbeerGpu;  

 

public class IndexArrayKernel implements Kernel {  

  private int[] mem;  

 

  public IndexArrayKernel(int[] mem){  

    this.mem = mem;  

  }  

 

  public void gpuMethod(){  

    int index = RootbeerGpu.getThreadIdxx();  

    mem[index] = index;  

  }  

}  

Figure 3.1.2 – Rootbeer Kernel Class Example #1 

You can see in the figure above that we have a private field that is part of 

IndexArrayKernel. This will be the data to copy to the GPU. It is a single dimensional array 

of integers, but we could have used any other primitive or reference type inside the array. 



 

 

59 

We could use any number of dimensions or we could have chosen to not even use arrays at 

all. Finally, we could even use static data. 

In “gpuMethod”, the GPU kernel gets threadIdx.x and assigns it to index. This is 

accomplished using a CUDA runtime packaged with Rootbeer. The CUDA runtime binds 

threadIdx.x to RootbeerGpu.getThreadIdxx. At line 13, we assign index to “mem[index]”. 

Under the covers, the first thing that happens is a reference is made to the mem field from 

the IndexArrayKernel class given the current “this pointer”. Then an integer array set 

operation is completed on the array object passing in the index and the value.  

Now that we have our Kernel class written, we need to write the code to control the 

GPU from the CPU. This is shown in Figure 3.1.3 below. 

001  

002  

003  

004  

005  

006  

007  

008  

009  

010  

011  

012  

013  

014  

015  

016  

017  

018  

019  

import org.tr ifort.rootbeer.runtime.Kernel;  

import org.trifort.rootbeer.runtime.Rootbeer;  

 

public class IndexArrayKernelLaunch {  

  public static void main(String[] args){  

    int size = 10;  

    int[] mem = new  int[size ];  

    List<Kernel> tasks = new ArrayList<Kernel>() ;  

    for(int i = 0; i < size; ++i){  

      tasks.add(new IndexArrayKernel(mem));  

    }   

    Rootbeer rootbeer = new Rootbeer();  

    Rootbeer.run( tasks );  

 

    for(int i = 0; i < mem.length; ++i){  

      System.out.println(“mem[“+i+”]: “+mem[i]); 

    }  

  }  

}  

Figure 3.1.3 – Rootbeer Kernel Launch Example #1 

Notice that we simply allocate a new integer array, create ten IndexArrayKernels 

stored in a list and call Rootbeer.run. There is no GPU memory allocation, no serialization 

code and no deserialization or free code. Rootbeer does all of these things automatically. In 

our simple example there are only a few lines of code difference, but in a complex 



 

 

60 

application with multiple kernel launch points, this can save considerable programming 

and debugging time. This usage of Rootbeer is called the Kernel Object API. It has worse 

performance than the Kernel Template API discussed in the next section. This is because, in 

the Kernel Object API, an object and header are created for each Kernel Object and this 

takes considerable time to serialize and deserialize. However the Kernel Object API can be 

useful if you need very different data for each kernel or you are a beginner. For best 

performance you will usually want to use the Kernel Template API. After discussing the 

Kernel Template API in the next section, we will talk about using multiple GPUs from 

Rootbeer and how to use shared memory and atomics from within Rootbeer. 

 

3.2. Kernel Templates API 

 The previous example showed the Kernel Objects API. That API is nice to get started 

when experimenting with Rootbeer, but it performs worse than the Kernel Templates API. 

In the Kernel Templates API, there is only one object and handle that needs to be 

transferred, improving copy time. In addition to that, the Kernel Templates API has been 

optimized for throughput processing. 

001  

002  

003  

004  

005  

006  

007  

008  

009  

010  

011  

012  

013  

014  

015  

016  

public class IndexArrayKernelTemplateLaunch {  

  public static void main(String[] args){  

 

    Rootbeer rootbeer = new Rootbeer();  

    List<G puDevice> devices = rootbeer.getDevices();  

    GpuDevice device0 = devices.get(0);  

    Context context0 = device0.createContext(96000432);  

    context0.setCacheConfig(CacheConfig.PREFER_SHARED);  

    context0.setThreadConfig(size, blockSize, blockSize * siz e);  

    context0.setKernel(new GPUHistKernel(input, resultGPU));  

    context0.buildState();  

 

    while(true){  

      context0.run();  

    }  

  }  



 

 

61 

017  }  

Figure 3.2.1 – Rootbeer Kernel Templates API in Throughput Mode 

 You can see in the above example that at line 6 we find the device we want to work 

with and in line 7 we create a context with the memory size initialized. The next three lines 

set the cache configuration, the thread configuration and the kernel. Then at line 11 we call 

build state, which initializes the driver to go into high throughput mode. 

 We have a while-true loop from lines 13 to 15 that runs the kernel over and over in 

high throughput mode. The context0.run() line serializes state reachable from the 

GPUHistKernel to the GPU, executes the tasks with the pre-built thread config on the GPU 

and then deserializes the state back. If needed, state can change before that line to give the 

GPU different data, and the results of the computation can be used after that line. 

 

3.3. Multi-GPU Support 

 To use multiple GPUs within a single computer, you just need to query the Rootbeer 

API and run two contexts at once. The code listing below shows this.  

001  

002  

003  

004  

005  

006  

007  

008  

009  

010  

011  

012  

013  

014  

015  

016  

017  

public void multArray(int[] array0, int[] a rray1 ){  

      

  Rootbeer rootbeer = new Rootbeer();  

  List<GpuDevice> devices = rootbeer.getDevices();  

  if(devices.size() >= 2){  

    Kernel gpu_kernel0 = new IndexArrayKernel(array0);  

    Kernel gpu_kernel1 = new IndexArrayKernel(array1);  

 

    GpuDevice device0 = devices.get(0);  

    GpuDevice device1 = devices.get(1);  

    Context context0 = device0.createContext(4096);  

    Context context1 = device1.createContext(4096);  

 

    rootbeer.run(gpu_kernel 0, context0 , 1, 10 );  

    rootbeer.ru n(gpu_kernel1 , contex t1 , 1, 10 );  

  }  

}  

Figure 3.3.1 – Rootbeer Multi-GPU Example 



 

 

62 

 A context is used as a container to hold memory buffers internally in Rootbeer. 

Some GPU applications can be optimized to leave some objects in GPU memory between 

task launches if they have not changed. Rootbeer does not support this optimization 

currently, but our architecture has been created while keeping that in mind. 

 The context must be created with a size. This is the size of the GPU heap that is 

allocated before serialization occurs. Originally in Rootbeer version 1.0, the runtime would 

allocate as much memory as possible. This causes issues on some systems due to 

differences in required reserve memory. 

 The new context API allows the developer to specify the size of the heap, or if not 

specified, will use the entire GPU memory. Once the program has run with the entire 

memory, you can query the Rootbeer API and determine exactly how much was used and 

then feed that back into the code for a manual allocation.  

 Now that it has been shown how to use multi-gpu support within a single machine, 

we will now show how to program against Rootbeer’s API for Shared Memory. 

 

3.4 Shared Memory Support   

 Shared memory in CUDA is like a software-defined cache. If the programmer can 

manage the cache better than hardware implementation, a speedup will occur. Rootbeer 

supports simple usage of the shared memory. A developer can place simple primitives or 

references to objects in the shared memory. A developer cannot currently place an entire 

object into the shared memory automatically. Future work could use static and dynamic 

analyses to automatically generate software-defined cache managing code or to allow 



 

 

63 

objects to be placed into shared memory. Support is still primitive; the developer needs to 

know the size of each object placed into shared memory. 

 The example below multiplies each element of an array by the first two elements. To 

save memory transfer time, the first two elements of the array are stored in shared 

memory by the first two threads. Then a block level synchronization is done and all of the 

threads in the block can see the items properly updated in shared memory. After that, each 

thread can fetch the two elements from shared memory only using a few clock cycles. The 

computation shown in Figure 3.4.1 probably won’t run faster, but the ideas on how to use 

shared memory from Rootbeer are correct.  

001  

002  

003  

004  

005  

006  

007  

008  

009  

010  

011  

012  

013  

014  

015  

016  

017  

018  

019  

020  

021  

022  

023  

024  

import org.trifort.rootbeer.runtime.Kernel;  

import org.tr ifort.rootbeer.runtime.RootbeerGpu;  

 

public class SharedMemoryKernel implement Kernel {  

  private int mem;  

 

  public void gpuMethod(){  

    int index = RootbeerGpu.getThreadIdxx();  

    if(index == 0 || index == 1){  

      //fetch from global memory  

      int  element = mem[index];  

      //store in shared memory  

      RootbeerGpu.setSharedInteger(index * 4, element);  

    }  

    RootbeerGpu.syncthreads ();  

    int element0 = RootbeerGpu.getSharedInteger(0);  

    int element1 = RootbeerGpu.getSharedInteger(4);  

    int []  mem_ref = mem;  

    int thread_item = mem _ref [index];  

    thread_item = (thread_item * element0) +  

                  (thread_item * element1);  

    mem_ref [index] = thread_item;  

  }  

}  

Figure 3.4.1 – Rootbeer Shared Memory Example 

 Let’s take a moment to analyze what is happening in the memory model for the 

above example. First, it is important to realize that when you are using Rootbeer, almost 

everything starts out in global memory. In our example above, “mem” is a field of 



 

 

64 

SharedMemoryKernel. The serialization code will first write an object header to a CUDA 

memory buffer, and then all of the reference handles and primitive types. In the Rootbeer 

GPU memory model, “mem” is an integer handle that points to another object (an int[] 

object that was also serialized). 

 Accessing the mem field twice without saving it will require two reads of the handle 

from global memory. At line 18 you can see a small optimization that we have done. We are 

reading the mem field and storing it in an “int[]” called mem_ref. Now, the handle that was 

in the “mem” field in global memory is now in a register in CUDA. Then when we reuse 

mem_ref at line 22, we can save time. The rules are: 1) all fields are in global ram, 2) all 

local variables are represented directly or as handles in registers and 3) things in shared 

memory are explicitly in shared memory. 

 When programming Rootbeer to obtain the best results, you need to do your own 

optimizations of reading fields and array lengths. To understand why this is the case, you 

have to understand how javac compiles code and how that maps to our CUDA C.  Jarvac 

completes zero optimizations on the Java Bytecode before writing it to the class file. This is 

because the JIT compiler needs to take into account externally linked code and it also uses 

runtime information to better optimize the code. It was determined by the Hotspot 

developers that it was best to simply not do any optimizations in Javac and do all 

optimizations in the JVM. Therefore our Java Bytecode that is compiled directly to CUDA C 

is unoptimized. This is why all of the redundant field references and array length reads are 

redundant reads to global memory. 

 

 



 

 

65 

3.5 Illustrative Example 

 An illustrative example that will be used in the remainder of this document will now 

be covered. The example covers every aspect of Java that will be displayed in the code 

generation section. 

 There are three classes in this example: 1) ArraySumKernel, 2) FloatArraySum and 

3) IntArraySum. The example has two different algorithms to sum the contents of arrays in 

parallel on the GPU and uses both integers and floats for this. At the end it also prints out a 

string constant that was created on the GPU saying which algorithm it used. 

 ArraySumKernel is below. It shows a kernel with static reference type fields. It also 

contains a synchronized method that uses instanceof. 

001  

002  

003  

004  

005  

006  

007  

008  

009  

010  

011  

012  

013  

014  

015  

016  

017  

018  

019  

020  

021  

022  

023  

024  

025  

026  

027  

028  

029  

030  

031  

package arraysum;  

 

import org.tr ifort.rootbeer.runtime.Kernel;  

import org.trifort.rootbeer.runtime.RootbeerGpu;  

 

public class ArraySumKernel implements Kernel {  

 

  private static Object array;  

  private static FloatArraySum engine;  

   

  public ArraySumKernel(Object array){  

    this.array  = array;  

  }  

   

  public void gpuMethod() {  

    int thread_id = RootbeerGpu.getThreadIdxx();  

    if(thread_id == 0){  

      initEngine();  

    }  

    RootbeerGpu.threadfence();  

    RootbeerGpu.syncthreads();  

    engine.sum();  

    RootbeerGpu.syncthreads();  

    if(thread_id == 0){  

      engine.printResult();  

    }  

  }  

 

  private void initEngine(){  

    if(array instanceof FloatArray){  

      FloatArray floatArray = (FloatArray) array;  



 

 

66 

032  

033  

034  

035  

036  

037  

038  

      engine = new FloatArraySum(floatArray.get());  

    } else {  

      IntAr ray intArray = (IntArray) array;  

      engine = new IntArraySum(intArray.get());  

    }  

  }  

}  

Figure 3.5.1 - ArraySumKernel 
 
 FloatArraySum is a base class that sums the elements of the array using some 

parallel processing. It contains instance fields, primitive fields, array references, and shared 

memory usage. It also contains creating a new array of primitive type and assigning a string 

constant to a field. 

001  

002  

003  

004  

005  

006  

007  

008  

009  

010  

011  

012  

013  

014  

015  

016  

017  

018  

019  

020  

021  

022  

023  

024  

025 

026  

027  

028  

029  

030  

031  

032  

033  

034  

035  

036  

037  

package arraysum;  

 

import org.trifort.rootbeer.runtime.RootbeerGpu;  

 

public class FloatArraySum {  

 

  protected String descriptor;  

  protected float[] array;  

  protected float[] newBuffer;  

  protected float sum;  

   

  public FloatArraySum(){   

  }  

   

  public FloatArraySum(Object array) {  

    this.array = (float[]) array;  

  }  

 

  public void sum() {  

    int thread_id = RootbeerGpu.getThreadIdxx();  

     

    float value1 = array[thread_id * 2];  

    float value2 = array[(thread_id * 2) + 1];  

    RootbeerGpu.setSharedFloat(thread_id * 2 * 4, value1);  

    RootbeerGpu.setSharedFloat(( thread_id * 2 + 1) * 4, value2);  

    RootbeerGpu.syncthreads();  

     

    int numThreads = RootbeerGpu.getBlockDimx();  

    for(int i = 0; i < 4; ++i){  

      if(thread_id < numThreads){  

        value1 = RootbeerGpu.getSharedFloat(thread_id * 2 * 4);  

        value2 = RootbeerGpu.getSharedFloat(  

          (thread_id * 2 + 1) * 4);  

        float itemSum = value1 + value2;  

        RootbeerGpu.setSharedFloat(thread_id * 4, itemSum);  

      }  

      RootbeerGpu.syncthreads();  



 

 

67 

038  

039  

040  

041  

042  

043  

044  

045  

046  

047  

048  

049  

050  

051  

052  

053  

054  

055  

056  

057  

058  

059  

060  

061  

062  

063  

064  

065  

066  

067  

068  

069  

070  

071  

      numThreads /= 2;  

    }  

    numThrea ds *= 2;  

     

    if(thread_id == 0){  

      newBuffer = new float[numThreads];  

    }  

    RootbeerGpu.threadfence();  

    RootbeerGpu.syncthreads();  

     

    if(thread_id < numThreads){  

      newBuffer[thread_id] = RootbeerGpu.getSharedFloat  

        (thread_ id * 4);  

    }  

    RootbeerGpu.syncthreads();  

     

    if(thread_id == 0){  

      float sum = 0;  

      for(int i = 0; i < numThreads; ++i){  

        sum += newBuffer[i];  

      }  

      this.sum = sum;  

      this.descriptor = "float - array - sum: ";  

    }  

  }  

 

  private synchronized float doubleResult(float sum){  

    return sum * 2;  

  }  

 

  public void printResult() {  

    System.out.println(descriptor+ doubleResult( sum) );  

  }  

}  

Figure 3.5.2 - FloatArraySum 

 IntArraySum is very similar to FloatArraySum, except that it operates on integers 

and not floats. It contains almost all of the elements from FloatArraySum, and it derives 

from FloatArraySum, so the field indexing will be interesting. 

001  

002  

003  

004  

005  

006  

007  

008  

009  

010  

011  

012  

013  

package arraysum;  

 

import org.trifort.rootbeer.runtime.RootbeerGpu;  

 

public class IntArraySum extends FloatArraySum {  

 

  private in t[] array;  

  private int sum;  

   

  public IntArraySum(Object array) {  

    this.array = (int[]) array;  

  }  

 



 

 

68 

014  

015  

016  

017  

018  

019  

020  

021  

022  

023  

024  

025  

026  

027  

028  

029  

030  

031  

032  

033  

034  

035  

036  

037  

038  

039  

040  

041  

042  

043  

044  

045  

046  

047  

048  

049  

050  

051  

  public void sum() {  

    int thread_id = RootbeerGpu.getThreadIdxx();  

     

    int value1 = array[thread_id * 2];  

    int value2 = array[(thread_id  * 2) + 1];  

    RootbeerGpu.setSharedInteger(thread_id * 2 * 4, value1);  

    RootbeerGpu.setSharedInteger((thread_id * 2 + 1) * 4, value2);  

    RootbeerGpu.syncthreads();  

     

    int numThreads = RootbeerGpu.getBlockDimx();  

    for(int i = 0; i < 4; ++i){  

      if(thread_id < numThreads){  

        value1 = RootbeerGpu.getSharedInteger(thread_id * 2 * 4);  

        value2 = RootbeerGpu.getSharedInteger(  

          (thread_id * 2 + 1) * 4);  

        int itemSum = value1 + value2;  

        RootbeerGpu.setSharedInte ger(thread_id * 4, itemSum);  

      }  

      RootbeerGpu.syncthreads();  

      numThreads /= 2;  

    }  

    numThreads *= 2;  

     

    if(thread_id == 0){  

      int sum = 0;  

      for(int i = 0; i < numThreads; ++i){  

        sum += RootbeerGpu.getSharedInteger(i  * 4);  

      }  

      this.sum = sum;  

      this.d escriptor = "int - array - sum: ";  

    }  

  }  

 

  public void printResult(){  

    String className = this.getClass().getName();  

    System.out.println(descriptor+className+": "+sum);  

  }  

}  

Figure 3.5.3 - IntArraySum 

  

 This concludes the Illustrative example and Chapter 3. We have seen in this chapter 

how to program using Rootbeer in a variety of ways. Next in Chapter 4 we will discuss the 

Rootbeer Class Loader. 

  



 

 

69 

 
 
 
 

Chapter 4 
 
 
 
 
 
 
 
 
 

Rootbeer Class Loader 
 
 
 
 

 
 The Rootbeer Class loader is an improvement to the original class loader provided 

by Soot. It was designed to allow Rootbeer to complete whole-program analysis while using 

less memory and time. Using the original class-loading algorithm can easily require over 

8GB of ram on simple programs. In our evaluation we show that the new class loader 

loaded a Scene that had 70% to 90% less classes and didn’t crash on larger test cases as did 

the original class loader. 

 

4.1 Soot Class Loading Algorithm 

 The original Soot class-loading algorithm loads all classes and any classes 

referenced from loaded classes. All methods in a class are loaded whether or not they exist 



 

 

70 

in possible program traces. In contrast, our work only loads methods if they are reachable 

from the specified entry points on a depth-first search walk of the call graph.  

 The Soot class-loading algorithm uses a worklist and three resolving levels to load 

classes. The table below shows the resolving levels and the loaded information at each 

level. 

Resolving Level Associated Information 
Dangling Nothing is known about the class, except its fully qualified 

name. 
Hierarchy SootClass objects for the class, its superclass and interfaces are 

created. The class, its superclass and interfaces are resolved to 
Hierarchy. 

Signatures SootMethods for all methods in the current class are created. 
Types for the return value, parameters and exceptions are 
resolved to Hierarchy. 

Bodies JimpleBodies are created for all methods in the current class. 
Creating the Jimple format requires that all SootMethods that 
are invoked from the current body have been created properly 
beforehand. The original class-loader handles this problem by 
raising every type in the constant pool of the current class to 
signatures. 

Figure 4.1 – Resolving Levels in Soot Class Loader 

 When a class is first referenced, it is added to the worklist at Hierarchy Level. At this 

level, the super class and interfaces are also added to the worklist at Hierarchy level. 

 Once another class needs to know the methods or fields that exist in a target class, 

the target class is loaded to Signatures Level. When a class is loaded to signatures, 

everything from Hierarchy Level is known, plus the method and field signatures. The 

original Soot class-loader raises each type found in the method and field signatures for the 

entire class to Hierarchy Level. At this point, while rising to Hierarchy Level, the type’s 

super class and interfaces are also raised to Hierarchy Level.  



 

 

71 

 To obtain the Java Bytecode for a method, a JimpleBody needs to be created from 

the method instructions. The JimpleBody creator needs all referenced methods to be raised 

to signatures or else it cannot handle interface invoke expressions properly. The original 

class-loader handles this problem by raising every type in the constant pool of the current 

class to signatures. Then as these are loaded to signatures, all the return, parameter and 

exception types are loaded to hierarchy. Doing this causes a type explosion - more types 

added cause yet even more types to be added. Due to the type explosion caused, loading a 

fairly large Scene can take 8GB to 15GB and some Scenes cannot be loaded in the available 

memory on many machines. All of this processing also takes a considerable amount of time.  

 

4.2 Rootbeer Class Loading Algorithm 

 The Rootbeer Class Loader is an optimized implementation of Rapid Type Analysis 

(RTA) class loading [50] [51] for Soot. An overview of Rapid Type Analysis will be given 

and then we will focus on the optimizations that the Rootbeer Class Loader does 

specifically for Soot and Java Bytecode. 

 RTA Class-Loading starts with a depth first search walk from prescribed entry 

points. It marks methods found as reachable. When it encounters a method that is possibly 

virtual, it must find the call sites for this virtual method. It uses the class hierarchy 

combined with the knowledge of classes that have been invoked with new to find valid call 

sites. As the depth first search walk extends into the analyzed program, more possible 

classes have been created with new and now the call sites for previously analyzed methods 

must be updated. This is accomplished by running the whole class-loading algorithm in a 



 

 

72 

fixed pointer over the number of classes created with new. An algorithm of this is listed in 

Figure 4.2.1 below 

001  

002  

003  

004  

005  

006  

007  

008  

CallGraph cg = loadCallGraphUsingClassHierarchy Analysis ();  

int prevSize = - 1;  

while(prevSize != newInvokes.size()){  

    prevSize = newInvokes.size();  

    fo r(EntryPoint entryPoint : entryPoints){  

        Set<NewI nvoke> dfsNewInvokes = forwardDFS(entryPoint, cg);  

        newInvokes.addAll(dfsNewInvokes);  

    }  

}  

Figure 4.2.1 – RTA Class Loading Algorithm 

 Many optimizations have been done in the Rootbeer Class Loader to make class-

loading fast. We will discuss the various phases of the Rootbeer Class Loading algorithm in 

the following sections. 

 

4.2.1 Load Hierarchy  

 The Rootbeer Class Loader starts out by loading the hierarchy from the input Java 

Archive (jar) files. A Java Archive is a zip file with compiled Java Bytecode stored in *.class 

files. The Rootbeer Class Loader starts out by reading the contents of every file ending in 

*.class from the submitted analysis classpath. There is special code at this point that can 

read a byte array representing the *.class file and return only the superclass string for the 

current class. The method for doing this came from reading Soot code and the internals of 

the JVM. After that is done, we have the class name string, the super class name string and 

the contents of the bytecode as a byte array. We have a treemap that can return the byte 

array contents given the class name for later use and we store the child/parent superclass 

information in two maps. One map is a superclass hierarchy map and another map is a 

subclasshierarchy map. In both of these maps, we map from RTAType to RTAType instead 



 

 

73 

of using strings. RTAType is a flyweight [52] that can hold a typename. In the flyweight, the 

package name and class name is split into two parts. Then, in most of the Rootbeer Class 

Loader code, all class file strings are converted to a unique integer. This technique is called 

manual string pooling. The JVM contains automatic string pooling [53] code, but ahead of 

time constants for the string pool size must be tuned for best performance depending on 

what version you are using. Using manual string pooling in this case will give reasonable 

performance under a large range of input programs and JVMs. We split the class/package 

name into two strings because many classes contain repeated package names and this 

reduces the size of the string pool, thus enhancing performance. RTATypes are often kept 

in treemaps and treesets in the code that are comparable based on the string numbers and 

array dimensions of the type.  

 A prior version read every class file using an O(n) average time lookup into the Java 

Archive and this proved too slow for real-world compilation cases. Now, the entire byte 

arrays for all class files are saved into a map. The memory usage required for this is 

reasonable, around 35MB. 

 

4.2.2 Find Entry Points 

 The next step of the processing is to find the entry points as specified by the user. 

The processing goes through all application classes (configurable) and searches all 

RTAMethods. At this point in the processing, the RTAMethods are read with special code 

that reads only the required entries from the constant pool, skipping all others for speed.  

Later, the full constant pool can be read if a method is loaded entirely to bodies. 



 

 

74 

 While searching all application RTAMethods, the configured method signatures, 

method subsignatures and EntryMethodTesters are checked. If any return entry point 

matches, the RTAMethod is marked as an entry point.  To configure this, the developer only 

uses simple strings passed in and doesn’t need to worry about the complexity of the 

original Soot class loader associated with specifying entry points. The EntryMethodTester 

interface used for specifying entry points is shown below. 

001  

002  

003  

004  

public interface EntryMethodTester {  

  public boolean matches(RTAMethod method);  

  public Set<String> getNewInvokes();  

}  

Figure 4.2.2.1 – EntryMethodTester Interface 

 The EntryMethodTester requires the developer to specify which classes were 

created with new at the entry point for the context sensitive class loader. To help fill in 

some details automatically, there is a MainEntryMethodTester class given that implements 

EntryMethodTester for regular Java main methods. In general, the RTAMethod object can 

determine a match based on the method signature, the staticness and publicness of a 

method and also from a custom string based instruction format. This string based 

instruction format is an entirely new low level instruction format that keeps all instructions 

as strings and retains type information that Rootbeer uses to detect the Rootbeer 

TestHarness. In general, it can be used by malware analyzers and others to work with very 

complex class loading. 

 

4.2.3 Load Signatures Classes 

 After finding the entry points, specific classes can be marked to be loaded simply to 

signatures without requiring them on the DFS walk. Rootbeer needs this to generate Jimple 



 

 

75 

code that uses the Rootbeer Runtime. If can be used by others anytime that code generation 

is done against an included runtime. 

 

4.2.4 Call Graph Fixed Point 

 The next phase of the algorithm is to load the call graph using a fixed point over the 

number of new_invokes found. This can be done in a context sensitive or context 

insensitive manner. In the context insensitive manner, the new_invokes are seeded with 

the classes specified from the entry point and additional new_invokes are directly added to 

all points in the call graph. In the context sensitive manner, the context new_invokes are 

seeded with the classes specified from the entry point. For each method traversed on a DFS 

walk, the current new_invoke context is used to find possible call site targets for a virtual 

method. Classes created with new are added to the current context and propagated to the 

next methods. RTATypes are used to represent the new_invokes and it helps that they are 

implemented as a flyweight pattern to reduce memory usage of the contexts. If a class or 

method cannot be found in the input Java Archives, it is created on the fly and marked as 

phantom as in the existing Soot code. If a method is marked “don’t follow” the Rootbeer 

Class Loader will not walk into the method. 

 There is a special option in the Rootbeer Class Loaders to forward specific method 

invocations to other methods. It is used for situations like Thread.start(). When 

Thread.start() is called, the JVM internally calls Runnable.run() on the class passed into the 

Thread constructor. Using this special option in the Rootbeer Class Loader allows us to 

properly analyze code in a thread by passing the current context to Runnable.run(). This 



 

 

76 

works nicely with Threads at this time but may need small improvements in the future to 

allow for more flexibility. 

 

4.2.5 Load Scene 

 To load the scene, first the types are numbered according to a reverse topological 

numbering [54]. This helps when interfaces are involved as regular breadth first search 

numbering can work with non-interface classes. The reverse topological numbering has 

Object numbered at zero, interfaces directly below Object numbered starting at one, and 

interfaces extending other interfaces next and non-interfaces numbered last. A diagram of 

this is shown in Figure 4.2.5.1 below. 

 
Figure 4.2.5.1 – Class Hierarchy Example for Reverse Topological Numbering 

 As can be seen in Figure 4.2.5.1, both Interface1 and Interface2 extend from Object, 

but Interface2 also implements Interface1. In this diagram, Object will be numbered 0, 

Interface1 will be numbered 1, Interface2 will be numbered 2 and Class1 will be numbered 

3. This is according to reverse topological order. If the algorithm had incorrectly used 

breadth first search ordering, Interface2 could be numbered before Interface1 and this will 



 

 

77 

cause problems because Interface1 must be loaded before Interface2 (since Interface2 

derives from Interface1). 

 Once the classes are numbered, first the SootClass object is created for Object and 

added to the Scene. Since Object is the superclass of all other types, it will be correctly 

loaded into the Scene before a class below needs to refer to it as a superclass. Then the 

SootClass objects are created according to ascending number. The topological order 

guarantees that the superclass and all implementing interfaces are correctly loaded into 

the Scene before the current class, otherwise Soot would fail to load the Scene properly. 

 Once all of the SootClasses are created, all SootFields are created that were found on 

the depth first search walk of the call graph. Note that some declared fields from the class 

files would be missing in this case. In analysis this isn’t that important, but for the case of 

code generation, that will become a problem. This problem is solved in the next section, 

4.2.6. 

 Once all of the SootFields are created, empty SootMethods are created for every 

method reachable on the depth first search walk. Again, some declared methods will not be 

loaded and the solution for this in the case of code generation is listed in the next section.  

 Now that all of the empty SootMethods have been created, the existing code Soot 

can used to load the JimpleBodies. We guarantee that this point all required SootClasses, 

SootMethods and SootFields have been created properly and the existing complicated body 

loading code will work. Since we are not loading every type inside of the constant pool and 

every SootMethod inside every SootClass, by this time, many fewer SootClasses have been 

made, saving time and space. 

4.2.6 Supporting Code Generation 



 

 

78 

 Part of the Rootbeer Serialization strategy is to generate Java Bytecode that can 

serialize state in a high performance manner. In order for this to work, the compiler needs 

to attach generated code to existing code loaded with the Rootbeer Class Loader. There is a 

problem because the Rootbeer Class Loader does not load every single method and some 

absent methods will be needed for other aspects of the application. We could load the 

additional methods at this time using either class loading strategy, but this will cause more 

types to be loaded than are needed. The Rootbeer Class Loader notices that the entries in 

the constant pool are just strings and don’t need to be converted into the types SootClass, 

SootMethod and SootField objects if the Jimple IR is not needed (which it isn’t at this point). 

We have created custom code that can read the byte array representing the contents of a 

class file and convert it into a Jasmin text-based IR. Then we use the existing Jasmin text-

based parser to parse the full class file text and merge it with the modified methods and 

fields from the previous class loader discussed. The existing Jasmin assembler is then used 

to convert the merged text back into a byte array representing a class file. (Jasmin is a 

project originally used by Soot to lower JimpleBodies to class files used by the JVM). Now 

we have the completed class files for placement into the Java Archive output. 

 This text-based extension is configurable with an API that is included with the 

Rootbeer Class Loader. The main functionality of this API is to present to the Rootbeer 

Class Loader what SootClasses have been modified so that it can return those SootClasses 

properly merged with the absent methods and fields from the original class file. 

 

 

4.3 Evaluation 



 

 

79 

To evaluate the Rootbeer Class Loader, we have executed test cases on a MacBook 

Pro with 8 cores and 8GB of RAM, using Java Hotspot Server 1.7.0_51-b13. 

Our test cases include a basic example (Appendix D), and the SPEC jvm 2008 

benchmark [55]. We measured the execution time using available timers in Java, and used 

Java APIs to measure the total memory used in the JVM. We compare our implementation 

against the Soot class loader by loading programs and taking measurements in the Whole 

Jimple Transformation Pack (wjtp) phase in Table 4.3.1. 

Test Cast Classes Loaded Memory Used (MB) Time (s) 
Basic Example (Soot) 2798 513 26 
Basic Example (RTA) 673 135 11 
SPEC jvm 2008 #1 (Soot) 7223 1325 105 
SPEC jvm 2008 #1 (RTA) 671 149 11 

Figure 4.3.1 – Evaluation Results for RTAClassLoader 
 

We notice a significant decrease in the number of classes loaded and execution time 

over the original Soot class-loader. In addition, in some larger examples, the Rootbeer Class 

Loader will succeed while the original Soot class loader will crash with an error. 

 

4.4 C# Class Loading 

 It is worthwhile to note that if Rootbeer was ported to C# [56], another very popular 

language by Microsoft, there may not be as many class loading issues. According to Robert 

Yates [57], C# does not keep methods virtual by default and this may lead to many less 

methods that need to be resolved in the Rootbeer Class Loader. This is in contrast where 

every method in Java is virtual by default. 

 

4.5 Rootbeer Class Loader Conclusion 



 

 

80 

Data structures and algorithms have been shown that efficiently load a Soot Scene 

using the Rootber Class Loader. The class loader loaded a Scene in 10x less time and used 

8x less memory. In large real-world problems this can turn infeasible analyses into feasible 

analyses in areas such as malware analysis, memory usage analysis and web-site security 

analysis. The Soot open source community is very active in Android malware analysis and 

the new class-loader created for Rootbeer could be incorporated into Soot once Android 

dex files are supported. 

This concludes the chapter on the Rootbeer Class Loader. The Rootbeer Serialization 

discussion follows. 

  



 

 

81 

 
 
 

Chapter 5 

 
 

 
 
 
 
 
 
 

Rootbeer Serialization 
 
 
 
 
 

 
 
 To find a sufficient way to serialize arbitrary state in Java, we studied several 

possible methods and then implemented our code using the most promising technique. We 

found that generating Java Bytecode was the best possible serialization technique given the 

other available options. 

 

5.1 Serialization Study 

 The performance of the three fundamental ways to read a field in Java were studied. 

The three ways of reading a field that are built into Java are: 1) JNI, 2) Reflection and 3) 

Pure Java. We wrote code to read a byte from the same field 10,000,000 times using each 



 

 

82 

approach. We did not cache any method or field descriptors to be fair to real-world cases. 

Reading the field from Pure Java was the fastest by a factor of 34x to 49x, which is seen in 

Figure 5.1.1 below. 

Method Execution Time (ms) 
JNI 247 
Reflection 173 
Pure Java 5 

Figure 5.1.1 – Performance of Accessing a Field in Java using Various Methods 

 Once it was known that Pure Java is the fastest way to read fields in Java, the 

question arises as to how to do that. In a compiler you cannot do this from within the 

program being compiled, because this will require Reflection. We accomplished this by 

generating Java Bytecode that can serialize and deserialize state for a certain root 

gpuMethod using Soot. 

 High performance serialization using bytecode generation can be used for purposes 

other than Rootbeer, such as removing live objects from the garbage collected heap onto a 

native, manually managed heap. This is usefull because some garbage collection algorithms 

start to introduce large pauses in Java execution when the heap contains many GB worth of 

live objects. With less memory on the live heap and mechanisms to convert quickly back 

from the native heap, we see less jitter in the latency profile of an application. 

 

 



 

 

83 

5.2 Serialization Capabilities 

 Rootbeer can serialize the types found in the table below. Many test cases have 

proven that the serialization works. In future work, we aim to re-write the serialization 

module to reduce JNI calls to improve performance. During work like this it helps to have a 

special memory buffer that can check that reads and writes to/from memory are aligned on 

the word size. 

Primitive Types Boolean, Byte, Char, Short, Integer, Float, Double 
Reference Types Strings, Objected and Boxed Primitive Types 
Arrays Single and Multi Dimensional Arrays of Primitive and Reference 

Types 
Fields Types referenced from instance and static fields 
Created Objects Reference types in the application or reference types with a void 

constructor from the Java Runtime Environment 
Figure 5.2.1 – Rootbeer Serialization Capabilities 

 

5.3 High-Level Memory Layout 

 From a high-level, the memory is organized with the static memory positioned at 

the top of the memory space and the instance objects and pointers are positioned below 

the static pointers. This is showing in Figure 5.3.1 below. The start of instance memory is 

aligned on a 16-byte boundary to ensure alignment of all types. 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  

00 00 0 0 00 00 0 0 STATIC MEMORY  00 00 0 0 00 00  

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  

00 00 00 00 00 00 INSTANCE MEMORY 00 00 00 00 00  

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  

Figure 5.3.1 – High-Level Memory Layout 



 

 

84 

 The static memory is written first and, as it is being written, instance objects with 

static field handles are placeed in instance memory. The serialization code can switch 

between static and instance object writing. 

 

5.4 Static Memory Layout 

 The static memory has static fields written at the top. The CUDA code knows the 

precomputed offset of static fields and accesses them that way. If a static field is an instance 

type, the handle is written into static memory and the instance is written in instance 

memory. After the fields and handles are a number of 32-bit lock locations initialized to 

negative, one for each of the classes reachable from the gpuMethod. After the locks come 

strings that represent the class names for each class that will exist on the GPU. This is 

needed to output the full name of an object during toString. 

 

5.5 Instance Memory Layout 

 The instance memory is arranged as objects after the static memory. Handles into 

the instance memory come from a handle array passed into the CUDA kernel. 

 

5.5.1 Reference Type Memory Layout 

The objects first have an object header, followed by reference type handles, followed 

by primitive typs. The object header contains a reference type count, a ‘constructor used’ 

flag, a class identifier, an object size and a monitor field. A garbage collector can follow the 

reference type handles due to the location and count field, however no garbage collector 

has been written. Future work may include published research on parallel GPU garbage 



 

 

85 

collection [38]. After the reference types, the primitive types are positioned according to 

decreasing size to ensure alignment on element-sized boundaries. 

 

5.5.2 Single Dimensional Primitive Type Array Memory Layout 

 Single dimensional arrays of primitive types are stored using a header and a raw 

block.  The header contains a reference type count, a ‘constructor used’ flag, a class 

identifier, object size (in bytes), array length (in elements) and a monitor field. 

 

5.5.3 Multi-Dimensional Array Memory Layout 

 The higher dimensions of multi-dimensional arrays are real Java arrays, because 

they need to be in order to support array length and clone. They have an object header, just 

like the single dimensional arrays and the data block contains 32-bit compressed handles 

into other multi or single dimensional arrays. 

 

5.5.4 String Type Array Memory Layout 

 Strings are treated specially in Rootbeer. In Java 1.6 strings are cached and, without 

special treatment, changes to a string on the GPU can cause incorrect when serializing back 

to the CPU. On some Java platforms a string has two fields (value and count) while on 

others a strings have other representations. To give uniformity to the CUDA runtime 

written for Rootbeer, we make strings contain an object header and a pointer to a character 

array in every case. The character array is a real Java array with a length field. 

 



 

 

86 

5.6 Serialization Algorithm 

 To actually execute the serialization, there are several important components. First, 

an IdentityHashMap is used to map from Object to long representing the memory location. 

This is used because, in an object graph, the same object can be referenced multiple times 

and without an IdentityHashMap it would cause the same object to be written twice, 

destroying object identity. The IdentityHashMap is checked first to see if the object has 

been written to the GPU heap, and if so the long reference is returned from the serialization 

method, otherwise the object is written and the long reference is saved in the 

IdentityHashMap. 

 In order to serialize a specific kernel, a Serializer object is obtained from the 

CompiledKernel. Serializer is an abstract base class that contains help on serializing and an 

abstract method to serialize a specific kernel. The concrete implementation for that 

abstract method is attached during Rootbeer complication. CompiledKernel is an interface 

that is then attached to the Kernel class that allows the Rootbeer runtime to obtain the 

concrete Serializer object, without writing the entire Rootbeer runtime using low-level 

Jimple instructions. 

 Once the concrete serializer is found, doWriteToHeap is called with the specifics for 

serializing a certain Kernel object. The diagram below displays the order of serialization 

1. Strings 
2. Multi-Dimensional RefType and PrimType Arrays 
3. Single-Dimensional RefType Arrays 
4. Single-Dimensional PrimType Arrays 
5. RefTypes 

Figure 5.6.1 – Serialization Type Order 
 



 

 

87 

 While serializing the RefTypes, the code is generated in order of most-derived class 

to most-base class. This is because we use instanceof to determine which serialization 

fragment should be used. If a base class instanceof catches a more-derived class, the system 

will have problems and won’t serialize properly. 

 

5.7 Deserialization Algorithm 

 In a way similar to the serialization algorithm, we have a Map that acts as a cache of 

objects that are being read from the GPU heap. However, in deserialization we use a 

TreeMap going from a long to an Object. TreeMaps are a good choice for keeping long 

integers in an ordered set and we do not need an IdentityHashMap because a long 

reference is always equal.  

 Just as in the serializer, we are using the Serializer object obtained from the 

CompiledKernel. If the item is not in the read cache, then we read a flag CTOR_USED from 

the GPU object to see if the object has been made inside the GPU. If it has, then a 

corresponding new invocation must happen inside the JVM on the CPU host (since we are 

not modifying the JVM). For all application classes, we have created sentinel constructors 

that ensure that we can create the object in this way with new. A sentinel constructor is a 

constructor that requires a single parameter: an object of type 

org.trifort.rootbeer.runtime.Sentinal. Since the sentinel package is from the rootbeer 

runtime, we can guarantee by convention that we are not overriding a constructor that 

another party has produced. If the GPU object was not an application class, we see if there 

is a void constructor that can be used instead. If there is no sentinel constructor and no 

void constructor, then we cannot deserialize the GPU object. Future work can incorporate 



 

 

88 

modifying the JDK libraries to automatically include sentinel constructors, but this can 

enter into legal issues related to modifying the bootclasspath.  

 Once we have a handle to a created object, either passed in or created recently with 

new, we call the deserialization fragments that have been attached to the CompiledKernel 

object by the compiler. 

 

5.8 Issues 

 Two primary issues with serialization occurred: 1) issues with private package 

classes and 2) issues with private and hidden fields. These issues will also occur in future 

general purpose high-performance serialization libraries.  

 

5.8.1 Package Private Classes 

 Package private classes can be a problem because the serialization engine needs to 

access all classes including package private classes, but the serialization engine is most 

likely in the compiler package namespace.  To solve this issue we are using the composite 

pattern [52] for serialization. We are generating code to form the pattern, so first we need 

to find the public roots of each package. Then we append serialization methods to classes, 

which eventually call the serialization method of the package private classes. The algorithm 

for package roots detection is in Section 5.8.1.1 below.  

 

 

 



 

 

89 

5.8.1.1 Package Roots Detection Algorithm 

 For the package roots detection algorithm, first it iterates through every reference 

type and checks to see if it is public. If so, a graph node for the public package is added to a 

list of roots. Then the remaining private packages are traversed and a public root is found 

from the previous list based on the namespace name. In this way we can keep package 

private classes and chain serialization starting from a package public class. 

 

5.8.2 Private and Hidden Fields 

 A naïve approach to handling private fields in serialization is to make all fields 

public. However, when incorporating hidden fields, making all fields public will change the 

logic of the code. Our solution is to append serialization and deserialization methods to 

read private fields from within public methods of the object. This works well with the 

package-private classes solution. 

  



 

 

90 

 

Chapter 6 
 
 
 
 
 
 
 
 
 
 

CUDA Code Generation 
 
 
 
 
 

 
 
 Rootbeer generates CUDA code and this is compiled to PTX by nvcc. This chapter 

shows and explains the technique to generate CUDA code that can support all of the Java 

Programming Language. This can also be used in other work to cross-compile Java 

Bytecode to C and run natively on a CPU.  

 

6.1 CUDA Entry 

 To start a Rootbeer compiled program, the CUDA entry is called first. This code is 

included in the CUDA runtime for Rootbeer. The name and parameter types of the entry 

method are the same for every Rootbeer application. This is because the nvcc compiler uses 

name mangling to produce the PTX method name and we did not spend the time to predict 



 

 

91 

how names are mangled in CUDA. Instead, we simply compiled the CUDA entry and inspect 

the PTX result file to obtain the function signature needed. An example entry signature is 

“_Z5entryPiS_ii”. That string is pasted into the Rootbeer JNI runtime to load the correct 

function to run. The CUDA entry method is shown below. 

001  

002  

003  

004  

005  

006  

007  

008  

009  

010  

011  

012  

013  

014  

015  

016  

017  

018  

019  

__global__ void entry( int  * handles, int  * exceptions,  

  int  numThreads , int  usingKernelTemplates){  

 

  int  totalThreadId  = getThreadId() ;  

  

  if(totalThreadId  < numThreads ){  

    int  exception = 0;  

    int  handle;  

    if(usingKernelTemplates){  

      handle = handles[0];  

    } else {  

      handle = handles[ totalThreadId ];  

    }  

    %%invoke_run%%(handle, &exception);   

    if(%%using_exceptions%%){  

      exceptions[ totalThreadId ] = exception;  

    }  

  }  

}  

Figure 6.1.1 - CUDA Entry Point for Rootbeer 
 

 The CUDA entry method contains four parameters. These are described in the table 

below. Thorsten Kiefer contributed the numThreads API inside the CUDAContext. 

Parameter Description 
handles Contains the top-level object handles to the Kernel objects. 

These object handles reference locations in the 
object_space. 

exceptions The place to write exceptions back to the CPU host. 
Contains the same number of spaces as the handles 
parameter. Each Kernel writes their exception into 
exceptions[loop_control] or leaves as zero for no exception 
(Out parameter) 

numThreads The number of threads to run on the GPU. The launched 
count is gridDim.x multiplied by blockDim.x (in the one 
dimensional case), but the application may not have a 
square thread count. That protects the GPU from running 
threads where data has not been initialized. 



 

 

92 

usingKernelTemplates Marked as zero if not using kernel templates, otherwise 
marked as one. If we are using kernel templates, then the 
handle is located at element zero from handles; otherwise, 
the handle is located according to the loop_control. 

Figure 6.1.2 - Parameters of the CUDA Entry Point 

 The CUDA entry starts out by finding the totalThreadId. Based on totalThreadId and 

numThreads, the code checks if the current thread should execute. If the current thread 

executes and it should not, the memory has not been setup and a segmentation fault will 

occur. 

 After that a handle is taken from handles[totalThreadId]. This contains the this-

pointer for the top level Kernel object on that thread. After is a line:  

 

%%invoke_run%%( handle, &exception);  

 
Figure 6.1.3 - Specializing CUDA Entry Point for GPUMethod 

 The %%invoke_run%% is replaced using string replacement by the fully qualified 

name of the ‘gpuMethod’ method of the application Kernel class while compiling this hard-

coded method. This is where the CUDA entry calls the users application code. After that, the 

exception returned is written to exceptions[totalThreadId] if exceptions have been 

enabled. Enabling exceptions is done with a string replace while ‘usingKernelTemplates’ is 

done with a parameter because enabling exceptions is done at compile time and kernel 

templates are configured at runtime. Using a string replace at compile time saves time 

transferring data at runtime. 

 

6.2 Instance Methods 



 

 

93 

 Instance methods are supported by writing a fully qualified function name that 

passes the thisref handle as the first parameter, followed by parameters (named 

parameter0, parameter1, etc.) and finally an exception as an out parameter. This function 

signature is shown in the figure below. Names for functions are mangled using a reduced 

set of type ids that only contain types of code being generated. Each argument is separated 

by _ and array types are preceded by n a’s (where n is the number of dimensions in the 

array). 

 

__device__  

void arraysum_ArraySumKernel _gpuMethod0_ ( int thisref, int * exception)  

 
Figure 6.2.1 – Instance Method Function Signature 

 After the function identifier, we write locals to the beginning of the function. 

Handles are represented as integers and initialized to null (-1). Since locals are global to 

methods in Java Bytecode, they are also global to functions in our CUDA C. This is also 

useful when compiling the code with a C99 compiler for use in the native emulator. The 

locals for this method are shown in the figure below. Primitive types from Java use the 

existing primitive types in CUDA. 

  int r0 = - 1;  

  int i0 = 0;  

  int $r1 = - 1;  

  int $r2 = - 1;  

Figure 6.2.2 – Instance Method Local Initialization 

 After the locals, come the instructions. They start out by assigning the thisref to r0, 

since the bytecode must do this from Jimple. Then i0 is initialized with the x thread index. 

The exception out parameter is checked and if it is non-zero, the method returns and the 

exception will either be caught in a higher function or transferred to the CPU. In this case, 



 

 

94 

the method returns void, so return is simply used. In cases where the method returns a 

value, zero is returned, but will not be used in the higher method. 

 Then the thread id is checked against zero. If the thread id is zero, then initEngine is 

called, otherwise the rest of the threads wait after initEngine for thread zero. All threads 

execute a threadfence and syncthreads and then they obtain the initialized engine from a 

static field. Only one thread should initialize the engine so they all share the same instance. 

After, a virtually invoked method (FloatArraySum.sum) is called to sum the array contents. 

To make all theads converge after, a Syncthreads is called. Finally, thread executes 

printResult. Notice that the handle for the static engine was read twice from a field because 

the Java Bytecode came to the Rootbeer compiler unoptimized. The developer can remove 

this spurious read or future compiler work can optimize this away. After everything, 

execution returns from the method. 

001  

002  

003  

004  

005  

006  

007  

008  

009  

010  

011  

012  

013  

014  

015  

016  

017  

018  

019  

020  

021  

022  

023  

024  

025  

026  

027  

  r0  =  thisref ;  

  i0  = org_trifort_rootbeer_runtime_RootbeerGpu_  

    getThreadIdxx(exception);  

  if(*exception != 0) {  

    return;  

  }  

  if(i0 != 0){  

    goto label0;  

  }  

  arraysum_ArraySumKernel_initEngine0_(r0,  exception);  

  if(*exception != 0) {  

    return;  

  }  

label0:  

  org_trifort_rootbeer_runtime_RootbeerGpu_threadfence(exception);  

  if(*exception != 0) {  

    return;  

  }  

  org_trifort_rootbeer_runtime_RootbeerGpu_syncthreads(exception);  

  if(*exception != 0) {  

    return;  

  }  

  $r1 = static_getter_arraysum_ArraySumKernel_engine(exception);  

  invoke_arraysum_FloatArraySum_sum0_($r1,  exception);  

  if(*exception != 0) {  

    return;  

  }  



 

 

95 

028  

029  

030  

031  

032  

033  

034  

035  

036  

037  

038  

039  

040  

041  

  org_trifort_rootbeer_runtime_RootbeerGpu_syncthreads(exception);  

  if(*exceptio n != 0) {  

    return;  

  }  

  if(i0 != 0){  

    goto label1;  

  }  

  $r2  = static_getter_arraysum_ArraySumKernel_engine(exception);  

  invoke_arraysum_FloatArraySum_printResult0_($r2,  exception);  

  if(*exception != 0) {  

    return;  

  }  

label1:  

  return;  
Figure 6.2.3 – Instance Method Body 

 

6.3 Static Methods 

 Static methods are supported by simply not passing in a thisref as the first 

parameter and compiling the method as normal. The CUDA code generator knows how to 

properly emit the function signatures without this parameter. 

 

6.4 Virtual Method Calls 

 After class loading, if a method is deemed to have only one call target, it is directly 

called. Otherwise, an invoke_ method is called that reads the object type id from the object 

and calls the appropriate concrete method. This is shown in the figure below. 

001  

002  

003  

004  

005  

006  

007  

008  

009  

010  

011  

012  

013  

014  

__device__  

void invoke_arraysum_FloatArraySum_sum0_(int thisref, int * 

exception){  

  

  char * thisref_deref;  

  GC_OBJ_TYPE_TYPE derived_type;  

  if(thisref == - 1){  

    *exception = 25599;  

    return ;  

  }  

  thisref_deref = org_trifort_gc_deref(thisref);  

  derived_type = org_trifort_gc_get_type(thisref_deref);  

  if(0){  

  }  else if(derived_type == 3365){  



 

 

96 

015  

016  

017  

018  

019  

020  

    arraysum_FloatArraySum_sum0_( thisref, exception);  

  }  else if(derived_type == 14532){  

    arraysum_IntArraySum_sum0_(thisref, exception);  

  }  

  return ;  

}  

Figure 6.4.1 - Resolving virtual method calls 

 At line 6, the object handle of the virtual method is checked against a null pointer. If 

it is null, a NullPointerException is thrown (exception type 25599 in this case). After that if 

the derived type is 3365, the FloatArraySum.sum is called, otherwise, if it is 14532, the 

IntArraySum.sum is called. These type numbers can be found in the ~/.rootbeer/types file. 

 

6.5 Instance Fields 

 For each SootField that is found in a depth-first search walk from the gpuMethod 

entry point, CUDA instance and static getter and setter functions are generated. If they are 

not used, they are removed by dead code elimination before passing to nvcc (Section 6.21). 

The getter and setter for FloatArraySum.array is shown below. 

001  

002  

003  

004  

005  

006  

007  

008  

009  

010  

011  

012  

013  

014  

015  

016  

017  

018  

019  

020  

021  

022  

023  

__dev ice__  

int instance_getter_arraysum_FloatArraySum_array(int thisref, int 

* exception){  

 

  GC_OBJ_TYPE_TYPE derived_type;  

  int offset;  

  char * thisref_deref;  

  if(thisref == - 1){  

    *exception = 25599;  

    return 0;  

  }  

  thisref_deref = org_trifort_gc_de ref(thisref);  

  derived_type = org_trifort_gc_get_type(thisref_deref);  

  offset = org_trifort_type_switch0(derived_type);  

  return *(( int *) &thisref_deref[offset]);  

}  

 

__device__  

void instance_setter_arraysum_FloatArraySum_array(int thisref, 

int paramete r0, int * exception){  

 

  GC_OBJ_TYPE_TYPE derived_type;  

  int offset;  



 

 

97 

024  

025  

026  

027  

028  

029  

030  

031  

032  

033  

  char * thisref_deref;  

  if(thisref == - 1){  

    *exception = 25599;  

    return;  

  }  

  thisref_deref = org_trifort_gc_deref(thisref);  

  derived_type = org_trifort_gc_get_type(thisref_der ef);  

  offset = org_trifort_type_switch0(derived_type);  

  *(( int *) &thisref_deref[offset]) = parameter0;  

}  

Figure 6.5.1 - Instance Field Getter / Setter Methods 

 In the figure above, org_trifort_type_switch0 is used. The SootFields in Soot have a 

declaring class that is bound to the handle. We want to use the object layout bound to the 

instance object, not the handle. The type switches translate from a derived type to an offset. 

They are compressed for bodies of type switches that are the same and they are placed in 

the same function. This was needed because the type switch code made the CUDA code too 

big to compile with nvcc. An example type switch function is shown below. 

001  

002  

003  

004  

005  

006  

007  

008  

009  

010  

011  

012  

013  

014  

015  

016  

017  

__device__  

int  org_trifort_type_switch0(int type){  

 

  int offset;  

  switch(type){  

  case 3365:  

    offset = 32;  

    break;  

  case 14532:  

    offset = 40;  

    break;  

  default:  

    offset = - 1;  

    break;  

  }  

  return offset;  

}  

Figure 6.5.2 – Field Offset Switch Function 

 You can see in the above type switch that if the type is 3365 (FloatArraySum) the 

offset into the object is 32 for the array field and if it is 14532 (IntArraySum) the offset is 

40. 

 



 

 

98 

 

 

6.6 Static Fields 

 Static memory is at the beginning of the object_space. An example of a static field 

getter is in the figure below. At line 6, we deference memory location zero, and then use a 

precomputed offset for this static field at line 7. The precomputed offsets for generated 

serialization and CUDA code are the same. 

001  

002  

003  

004  

005  

__device__  

int static_getter_arraysum_ArraySumKernel_engine(int * exception){  

  char * thisref_deref = org_trifort_gc_deref(0);  

  return *(( int *) &thisref_deref[28]);  

}  

Figure 6.6.1 – Static Field Getter Method 

 

6.7 New Objects 

 To create new objects on the GPU, special init functions are created. The init 

functions call org_trifort_gc_malloc given a size that is computed from the Jimple data 

structures. If malloc returns -1, an OutOfMemoryError is thrown that can be caught from 

the application code, or transferred up to the CPU, where it will be thrown on the CPU. The 

init function name is appended with a specific hard coded UUID to prevent naming conflicts 

with application methods named init. (In Java Bytecode the name is a special name of <init> 

that cannot have conflicts). 

001  

002  

003  

004  

005  

006  

007  

008  

__device__  

int  arraysum_FloatArraySum_  

  initab850b60f96d11de8a390800200c9a660_19_ ( char parameter0, int *   

  exception)  

{  

  int r0 = - 1;  

  int r1  = - 1;  

  int $r2 = - 1;  



 

 

99 

009  

010  

011  

012  

013  

014  

015  

016  

  int thisref;  

  char * thisref_deref;  

  thisref = - 1;  

  org_trifort_gc_assign(&thisref, org_trifort_gc_malloc(64));  

  if(thisref == - 1){  

    *exception = 25777;  

    return - 1;  

  }  

Figure 6.7.1 – Constructor Initialization 

 After the malloc, the header information is filled in (including the size of the object 

and the type id and monitor variable). Some reserved fields for a future garbage collector 

are also initialized, but they will most likely change. A garbage collector was attempted, but 

deadlocks occurred due to unknown GPU thread scheduling behavior at the time. After the 

heap is initialized, all Java fields are initialized with the default values that would be used 

from the CPU JVM. 

001  

002  

003  

004  

005  

006  

007  

008  

009  

010  

011  

012  

013  

014  

015  

  thisref_deref = org_trifort_gc_deref(thisref);  

  org_trifort_gc_set_count(thisref_deref, 3);  

  org_trifort_gc_set_color(thisref_deref, COLOR_GREY);  

  org_trifort_gc_set_type(thisref_deref, 3365);  

  org_trifort_gc_set_ctor_used(thisref_der ef, 1);  

  org_trifort_gc_set_size(thisref_deref, 64);  

  org_trifort_gc_init_monitor(thisref_deref);  

  instance_setter_arraysum_FloatArraySum_array(thisref, - 1,  

    exception);  

  instance_setter_arraysum_FloatArraySum_descriptor(thisref, - 1,  

    exception );  

  instance_setter_arraysum_FloatArraySum_newBuffer(thisref, - 1,  

    exception);  

  instance_setter_arraysum_FloatArraySum_sum(thisref, 0,  

    exception);  

Figure 6.7.2 – Constructor Body 

 After the header and fields are initialized, the body of the constructor for that init 

method is emitted into the CUDA constructor. This is shown in figure 6.7.3 below. 

001  

002  

003  

004  

005  

006  

007  

008  

009  

  r0  =  thisref ;  

  r1  =  parameter0 ;  

  $r2  = (int)  r1 ;  

  instance_setter_arraysum_FloatArraySum_arra y(r0, $r 2,  

    exception);  

  if(*exception != 0) {  

    return 0;  

  }  

  return r0;  



 

 

100 

Figure 6.7.3 - Constructor Body #2 

 

6.8 Instance Synchronized Methods 

 Synchronized methods are implemented by locking a re-entrant mutex in the object 

header of the method’s current object. Care must be taken to make the nvcc static analyzer. 

First, instead of using “while(true)” we have a counter that always gets reset at a different 

part of the loop, causing the infinite loop that we want. Two avoid deadlock, we need 

different behavior on Windows and Unix. On Windows, we need to reset the counter before 

the critical section and on Linux and Mac we need to reset the counter after the critical 

section. This is because the nvcc compilers are slightly different between these two 

platform configurations and emit code differently. The Windows compiler depends on 

Visual Studio (cl.exe) while the Linux and Mac compilers depend on g++. An example 

synchronized method in CUDA is shown below. 

001  

002  

003  

004  

005  

006  

007  

008  

009  

010  

011  

012  

013  

014  

015  

016  

017  

018  

019  

020  

021  

022  

023  

024  

025  

__device__  

float arraysum_FloatArraySum_doubleResult7_7_(int thisref, float  

  parameter0, int * exception){  

 

  int r0 = - 1;  

  float f0 = 0;  

  float $f1 = 0;  

  int id;  

  char * mem;  

  int count;  

  int old;  

  char * thisref_synch_deref;  

  id = getThreadId();  

  mem = org_trifort_gc_deref(thisref);  

  mem += 16;  

  count = 0;  

  while(count < 100){  

    old = atomicCAS((int *) mem, - 1 , id);  

    if(old == - 1 || old == id){  

      ////////////////////////////////////  

      // the below three lines contain the  

      // body of the original java method  

      ////////////////////////////////////  

      r0 = thisref ;  

      f0 = parameter0 ;  



 

 

101 

026  

027  

028  

029  

030  

031  

032  

033  

034  

035  

036  

037  

      $f1 = f0 * 2.0F ;  

      org_trif ort_exitMonitorMem(mem, old);  

      return $f1 ;  

    }  else {  

      count++;  

      if(count >  50){  

        count = 0;  

      }  

    }  

  }  

  return 0;  

}  

Figure 6.8.1 - Synchronized Method 

 To actually implement the monitor, we use atomic compare and set with a monitor 

location. If the location contains -1, we set the location equal to the global GPU thread id 

(blockDim.x * blockIdx.x + threadIdx.x). Then we check the old value from atomicCAS. If it 

is -1, we enter the critical section normally and if it is the same thread id, we enter the 

critical section in a re-entrant manner. 

 Before exiting the method in any way (including exceptions) we unlock the monitor. 

You can see we do this at line 30 before the only valid exit (returning the result). In the case 

of exceptions, we unlock the monitor before returing from those too. 

 

6.9 Static Synchronized Methods 

 Static Synchronized methods are supported exactly as instance synchronized 

methods except for the monitor location. After the static fields in the static memory, a set of 

static monitors exist that are all initialized to -1. There is one static monitor per class and 

the CUDA code generation knows the index for a given class. 

 

 

 



 

 

102 

 

 

6.10 Synchronized Objects 

 Synchronized objects are supported much like synchronized methods, except the 

memory location is related to the object. Care is taken to ensure that the lock is released on 

all exit points including method return, locking-region end and exception throw. 

 

6.11 Instanceof 

 For each instanceof instruction used in the application code, an instanceof check 

function is generated for CUDA. An example of calling “instanceof FloatArray” is shown 

below and after that the contents of the check function are shown. 

001  

002  

003  

  $z0 =  org_trifort_rootbeer_instanceof_arrays um_FloatArray($r1,  

    exception);  

  if($z0 == 0 ) goto label0;  

Figure 6.11.1 – Instanceof Method Call 

 You can see in the code below that we obtain the type id from the object and have a 

switch statement where true is returned for FloatArray and everything else returns false. 

In more complicated examples we take into account the full class hierarchy, but only 

FloatArray was created with new and matches in this case. (no types of Object have been 

created with new in our application) 

001  

002  

003  

004  

005  

006  

007  

008  

009  

010  

__device__  

char org_trifort_rootbeer_instanceof_arraysum_FloatArray(int  

  thisref, int * exception){  

   

  char * thisref_deref;  

  GC_OBJ_TYPE_TYPE type;  

  if(thisref == - 1){  

    return 0;  

  }  

  thisref_deref =  org_trifort_gc_deref(thisref);  



 

 

103 

011  

012  

013  

014  

015  

016  

017  

  type = org_trifort_gc_get_type(thisref_deref);  

  switch(type){  

    case 3363:  

      return 1;  

  }  

  return 0;  

}  

Figure 6.11.2 – Instanceof Method 

 

6.12 Exceptions 

 Handling exceptions requires that locks be released before returning from a 

method. Code is generated that does this, but only works for simple cases at the moment. 

There is a failing test case called the NestedMonitorTest that needs to be fixed to handle 

every type of nested monitor combination.  

 

6.13 Console Printing 

 Console printing is achieved by mapping the PrintStream.println method to printf 

statements accessible from CUDA. This is incomplete because other PrintStream objects 

other than System.out will not work. However, it is still very useful in debugging and 

Aparapi will not run a Kernel that contains a System.out.println.  

 

6.14 Strings 

 Strings are treated specially in Rootbeer. Differences exist in the internal 

representation for strings within different versions of Java. In some versions of the JVM, 

strings are cached and this disrupts our previous serialization algorithms. When we would 

use reflection to change the internal state of a String object, but it would change all 

instances of the String in the application.  



 

 

104 

 Rootbeer uses String.toCharArray to properly access the internal char array buffer 

for a string to serialize. A String in Rootbeer is an object with an object header and one 

reference type field pointing to a character array object. 

 In our canonical example we assign a string constant to a field. The CUDA code 

generated for this purpose is displayed in the figure below. 

001  

002  

003  

004  

int str_const = org_trifort_string_constant  

  ( (char *) "float - array - sum: " , exception);  

instance_setter_arraysum_FloatArraySum_descriptor ( r0, str_const ,  

  exception);  

Figure 6.14.1 - String Constant Method Call 

 We have a built-in function in the supplied runtime called 

org_trifort_string_constant. This is used to convert the Java Bytecode string constants to 

String objects at runtime. The string constant built-in source is shown below. First we 

create a manage char[] from a native string constant (line 7). Then we take the managed 

char[] and pass it to the String(char[]) constructor. 

001  

002  

003  

004  

005  

006  

007  

008  

009  

010  

011  

__device__  int  

org_trifor t_ string_constant( char * str_constant,  

  int * exception)  

{   

  int characters;  

 

  characters = org _trifort_char_constant( str_constant,  

    exception);  

  return org_trifort_root beer_string_from_chars(  

    characters, exception);  

}  

Figure 6.14.2 - String Constant Method 

 String concatenation in Java is supported with StringBuilder operations inside Java 

Bytecode. Rootbeer has custom CUDA functions to execute StringBuilder append for all 

primitive types and Object, which uses Object.toString.  

Another important aspect of String concatenation is converting primitive numbers 

to strings.  Rootbeer supports converting integers, longs, floats and doubles to strings using 



 

 

105 

custom CUDA code derived from open source standard c library code. This support was 

added by Martin Illecker as part of his Master’s thesis titled “Scientific Computing in the 

Cloud with Apache Hadoop”. 

 

6.15 Primitive Arrays 

 Primitive arrays are supported with proper serialization and getter/setter function 

generation for each type of array used in the application. An example array getter is shown 

in the figure below. 

001  

002  

003  

004  

005  

006  

007  

008  

009  

010  

011  

012  

013  

014  

015  

016  

017  

018  

019  

020  

021  

022  

__device__  

float float__array_get( int thisref, int parameter0,  

  int * exception)  

{  

  int offset;  

  int length;  

  char * thisref_deref;  

  offset = 32+(parameter0*4);  

 

  if(thisref == - 1){  

    *exception = 25599 ;  

    return 0;  

  }  

  thisref_deref = org_trifort_gc_deref( thisref);  

  length = org_trifort_getint(thisref_deref, 12);  

  if(parameter0 <  0 || parameter0 >= length){  

    *exception = org_trifort_rootbeer_ ArrayOutOfBounds Ex(   

      parameter0,  thisref, length, exception);   

    r eturn 0;  

  }  

  return *(( float *) &thisref_deref[offset]);  

}  

Figure 6.15.1 - Float Array Getter 

 At line 8 in the code above, the offset into the array is calculated as 

header_size+(parameter0*4). Parameter zero is the index into the array and four is the size 

of each element. Rootbeer generates different constants for each primitive size (for 

instance doubles will be 8 bytes per double). 



 

 

106 

 Then at line 10, a null pointer check is done. After, checks on the array bounds are 

done and if the array index is out of bounds, and ArrayIndexOutOfBoundsException is 

thrown. Finally, on the last line, the array element is referenced and returned. Once the 

developer gets their code right, both the null-pointer check and the out-of-bounds check 

can be removed by configuring Rootbeer complication. This can improve speed of 

executing code on the GPU. 

 

6.16 Reference Type Arrays 

 Reference type arrays are supported in a similar manner as primitive type arrays, 

except the array elements contain integer handles. Every reference type array element is 4 

bytes. 

 

6.17 Higher-Dimensional Arrays 

 Arrays that have a dimension greater than one are supported as reference type 

arrays. Each handle is to an array of a lower dimension. Finally, at the lowest level, the 

primitive or reference data for the array element is stored. 

 

6.18 New Array Instances 

 To handle creating new instances of arrays on the GPU, we generate code for each 

type. An example creator for float arrays is shown in the figure below. We start out at line 7 

calculating the total size of the array object. It requires the size of the object header (32 

bytes) plus the size of each element (4) times the number of elements (size). Then we align 



 

 

107 

this size to the next multiple of 16 bytes (lines 8 to 11). An alignment of 16 bytes is 

required because the minimum object size is 32 bytes and all handles are compressed by 

shifting the value 4-bits down. 

  Then we make a call to GPU malloc (line 12) and throw an OutOfMemoryError (line 

14) if we don’t have any more space in the GPU memory. We initialize the header (lines 18 

to 26) and initialize each element of the array to the Java or Rootbeer default. 

001  

002  

003  

004  

005  

006  

007  

008  

009  

010  

011  

012  

013  

014  

015  

016  

017  

018  

019  

020  

021  

022  

023  

024  

025  

026  

027  

028  

__device__ int  

float__array _new( int size, int *  

  exception)  

{  

  //local variable declarations omitted  

 

  total_size = (size * 4)+ 32;  

  mod = total_size % 16;  

  if(mod != 0) {  

    total_size += (16 -  mod);  

  }  

  thisref =  org_trifort_gc_malloc( total_size);  

  if(thisref == - 1){  

    *exception = 23516;  

    return - 1;  

  }  

  thisref_deref = org_trifort_gc_dere f( thisref);  

  org_trifort_gc_set _count(thisref_deref, 0);  

  org_trifort_gc_set_color(thisref_deref, COLOR_GREY);  

  org_trifort_gc_set_type(thisref_deref, 5262);  

  org_trifort_gc_set_ctor_used(thisref_deref, 1);  

  org_trifort_gc_set_size(thisref_deref, total_size);  

  org_trifort_setint(th isref_deref, 12, size);  

  for(i = 0; i < size; ++i){  

    float__array _set( thisref, i, 0, exception);  

  }  

  return thisref;  

}  

Figure 6.18.1 - Float Array Creation 

 

6.20 Class constants 

 Class constants are required to support Object.toString. They are supported in 

Rootbeer using special serialization of only the name inside the class constant to a special 



 

 

108 

area of memory. A class constant is used in generated CUDA using a statement similar to 

the following. The class types are taken from the Java Bytecode and converted to a number. 

(Class constant zero is used here to represent IntArraySum.class). 

001  

002  

003  

 

$r13 = org_trifort_classConstant(0);  

 

Figure 6.20.1 - Class Constant Method Call 

 The class constant object fetch code is shown below. We keep the pointer to the 

class constant space in shared memory (m_local[2]). Then once we have the constant space, 

we obtain the handle to the object_space of the class constant object. 

001  

002  

003  

004  

005  

__device__ int  

org_trifort_classConstant(int type_num){  

  int *  temp = (int *) m_l ocal[2];  

  return temp[type_num];  

}  

Figure 6.20.2 - Class Constant Method 

 

6.21 Shared Memory 

 Writing to shared memory is supported with a set of included methods for each 

primitive type. An example shared memory write function for integers is shown below. 

First we check the array bounds from lines 5 to 11 (if they are enabled). Then we write 

each byte of the integer into the shared memory. 

001  

002  

003  

004  

005  

006  

007  

008  

009  

010  

011  

012  

013  

__device__ void 

org_trifort_rootb eer_runtime_RootbeerGpu_setSharedInteger  

  ( int index, int value, int * exception)  

{   

#ifdef ARRAY_CHECKS  

  if(index < 0 || index + 4 >= %%shared_mem_size%%){  

    *exce ption = org_trifort_rootbeer _arrayOutOfBounds Ex(  

       i ndex, 0, %%shared_mem_size%%, exception);  

    return;  

  }  

#endif  

  m_shared[index] = (char) (value & 0xff);  

  m_shared[index + 1] = (char) ((value >> 8)  & 0xff);  



 

 

109 

014  

015  

016  

  m_shared[index + 2] = (char) ((value >> 16) & 0xff);  

  m_shared[index + 3] = (char) ((value >> 24) & 0xff);  

}  

Figure 6.21.1 - Shared memory writer 

 

6.22 Dead Function Elimination 

 Simplistic dead function elimination is done on the generated CUDA code before 

sending to nvcc. If a function is not called from a method reachable from the CUDA entry, it 

is eliminated. We only support the subset of C that our CUDA code generator produces for 

this task, but it uses a well-tested, state-machine driven parse.  

This allows our hand coded CUDA runtime to be combined with automatically 

generated code. The CUDA runtime code may call code that is not automatically generated, 

because that feature was not needed in the application. If we do not eliminate the unused 

code, parts will make calls into missing generated code and cause compiler errors in nvcc. 

This functionality is found in the org.trifort.rootbeer.deadmethods package. 

 

6.23 CUDA Code Generation Conclusions 

 In conclusion, most of Java Bytecode can be represented using generated CUDA. 

While we are extremely happy with our results, there are a few areas that can be improved. 

 First, OpenCL cannot be used within Rootbeer due to the lack of recursive OpenCL 

functions. This precludes the use of AMD GPUs and the Intel MIC, which contains many 

weak Xeon Phi cores. However, a future work item could be to support OpenCL if no 

recursion was detected. 



 

 

110 

 Next, exceptions are supported using an out parameter that is subsequently checked 

after each method. Migration to generating using the libNVVP library from NVIDIA for 

direct PTX code generation may help in this area regarding performance. 

  



 

 

111 

 
 
 

Chapter 7 
 
 
 
 
 
 
 
 
 

Performance 
 
 
 
 
 

 
 
 In this chapter we will discuss 4 GPU programs created with Rootbeer. In examples 

where there is O(n^3) computation per O(n) elements of input, we obtain a speedup 

because the computation is larger than the serialization time. In examples with less 

computation, the CPU is faster because serialization becomes a bottleneck. An overview of 

the programs is below. 

Program Time Complexity Speed 
Matrix Multiply O(n^3) 94.9x speedup 
HMM Viterbi Path O(n^2*t) 102.7x speedup 
Scan O(n) 7x slowdown 
Histogram O(n) 1.1x slowdown 

Figure 7.1 – Overview of Performance Examples 
 



 

 

112 

 For each example we have a separate section describing the example, listing the 

code and showing in-depth timings. 

 

7.1 Matrix Multiply Example 

 Matrix Multiply is a classic example of using a GPU to obtain a speedup. There are 

O(n^3) operations per O(n) of data, so serialization time is easy to overcome. Chapter One 

has covered many types of Matrix Multiply examples; this section will focus on “Rootbeer 

Shared”, the example that obtained a 94.9x speedup over a 4-core Java CPU version. The 

kernel class for the shared matrix multiply is listed below. 

001  

002  

003  

004  

005  

006  

007  

008  

009  

010  

011  

012  

013  

014  

015  

016  

017  

018  

019  

020  

021  

022  

023  

024  

025  

026  

027  

028 

029  

030  

031  

032  

033  

034  

public class MatrixKernel implements Kernel {  

 

  private float[] a;  

  priv ate float[] b;  

  private float[] c;  

   

  private static final int SIZE_FLOAT = 4;  

  private static final int TILE_SIZE = 16;  

  private static final int SHARED_B_START =  

    TILE_SIZE * TILE_SIZE;  

   

  public MatrixKernel(float[] a, float[] b, float[] c){  

    this.a = a;  

    this.b = b;  

    this.c = c;  

  }  

   

  @Override  

  public void gpuMethod() {  

    float[] registerA = a;  

    float[] registerB = b;  

    float[] registerC = c;  

     

    int blockIdxx = RootbeerGpu.getBlockIdxx();  

    int blockIdxy = Rootbee rGpu.getBlockIdxy();  

     

    int threadIdxx = RootbeerGpu.getThreadIdxx();  

    int threadIdxy = RootbeerGpu.getThreadIdxy();  

     

    int width = 2048;  

    int aBegin = width * TILE_SIZE * blockIdxy;  

    int aEnd = aBegin + width -  1;  

    int aStep = TILE _SIZE;  

    int bBegin = TILE_SIZE * blockIdxx;  



 

 

113 

035  

036  

037  

038  

039  

040  

041  

042  

043  

044  

045  

046  

047  

048  

049  

050  

051  

052  

053  

054  

055  

056  

057  

058  

059  

060  

061  

062  

063  

064  

065  

066  

067  

068  

069  

070  

071  

072  

073  

    int bStep = TILE_SIZE * width;  

    float sum = 0;  

    int arrayIndex = width * threadIdxy + threadIdxx;  

     

    int a = aBegin;  

    int b = bBegin;  

     

    while(a <= aEnd){  

      float valueA = register A[a + arrayIndex];  

      float valueB = registerB[b + arrayIndex];  

     

      int indexA = ((threadIdxy * TILE_SIZE) + threadIdxx);  

      int indexB = SHARED_B_START +  

        ((threadIdxy * TILE_SIZE) + threadIdxx);  

 

      RootbeerGpu.setSharedFloat(inde xA * SIZE_FLOAT, valueA);  

      RootbeerGpu.setSharedFloat(indexB * SIZE_FLOAT, valueB);  

      RootbeerGpu.syncthreads();  

       

      for(int k = 0; k < TILE_SIZE; ++k){  

        indexA = ((threadIdxy * TILE_SIZE) + k);  

        indexB = SHARED_B_START + (( k * TILE_SIZE) + threadIdxx);  

         

        valueA = RootbeerGpu.getSharedFloat(indexA * SIZE_FLOAT);  

        valueB = RootbeerGpu.getSharedFloat(indexB * SIZE_FLOAT);  

        sum += valueA * valueB;  

      }  

 

      RootbeerGpu.syncthreads();  

 

      a +=  aStep;  

      b += bStep;  

    }  

 

    int c = width * TILE_SIZE * blockIdxy +  

      TILE_SIZE * blockIdxx;  

    registerC[c + arrayIndex] = sum;  

  }  

}  

Figure 7.1.1 – Shared Matrix Multiply Kernel 

 Below we have listed the individual timings of the GPU and CPU version. You can see 

that the serialization, deserialization and memory copy times are small compared to the 

total time that the CPU requires. Therefore Rootbeer can obtain a large speedup for this 

O(n^3) algorithm. 

Java Serialization Time 35 milliseconds 
JNI Driver Memcpy to Device 55 milliseconds 
GPU Execution Time 136 milliseconds 
JNI Driver Memcpy From Device 27 milliseconds 



 

 

114 

Java Deserialization Time 33 milliseconds 
Total GPU Time 286 milliseconds 
Total CPU Time 27129 milliseconds 

Figure 7.1.2 – Shared Matrix Multiply Timings on NVIDIA Tesla C2050 GPU and Four Intel 
Xeon Cores 
 

7.2 HMM Example 

 Hidden Markov Models are an interesting machine learning example that the author 

is using in the Welch Lab to complete a genomic clustering analysis for computational 

biology. 

 In “Fundamentals of Speech Recognition”, Rabiner and Juang [58] describe the three 

major questions in HMMs. In our analysis, we are only concerned with two questions: 1) 

given a signal, what is the optimal HMM to represent it and 2) given an HMM what is the 

probability that a given, possibly different, signal produced the HMM. 

 Our analysis takes data from the genetic mutations of 308 Myxococcus xanthus 

bacteria and attempts to cluster this complex data. The analysis has three stages: 

1) Train 308 HMMs with 308 signals produced from annotated time-lapse 

microcinematography image stacks. 

2) Produce pairwise distances for 308 HMMs by 308 signals. 

3) Use hierarchical agglomerate clustering given the pairwise distances to produce 

a final clustering image that can be analyzed by a biologist. 

 

Training each HMM with 2240 states and a signal length of 8000 requires 

approximately 39 minutes each. Since there are 308 to train, the total training time is 

approximately 8.3 core days. The training phase can be accelerated using a GPU by focusing 



 

 

115 

on the Viterbi path algorithm. We have obtained a 102.7x speedup using a single GPU, 

therefore the total time is now 1.992 hours. This proven speedup will be useful for the 

longer required signal of 62500 and also for an analysis using wavelet transformed raw 

image frames. In addition, a general purpose HMM library could be made with Rootbeer 

that can make real-time analysis feasible with HMMs in the areas of signal processing and 

medical imaging and voice recognition, to name a few. 

The next step is to compute 308x308 pairwise distances. Each requires 

approximately 16 seconds, arriving at approximately 17 days of computation time. We 

have reduced the computation time for each pairwise distance by 16x using Rootbeer and 

each pair now requires 1 second each. With our improvements, the total time is now 1.097 

days. With this speedup, an analysis based on raw image frames and the wavelet transform 

may now be possible using a 16 GPU system. 

  As a basis for our GPU HMM code, we are using Jahmm [59] by Jean-Marc François.  

We are using the k-means approach to initializing the HMM states from zero knowledge 

and a scaled forward-backward calculator to estimate the likelihood probability. We 

created a custom parallel GPU Viterbi algorithm and it is listed in the figure below. 

001  

002  

003  

004  

005  

006  

007  

008  

009  

010  

011  

012  

013  

014  

015  

016  

017  

package be.ac.ulg.montefiore.run.jahmm.gpu.gpu;  

 

import org.trifort.rootbeer.runtime.Kernel;  

import org.trifort.rootbeer.runtime.RootbeerGpu;  

 

import be.ac.ulg.montefiore.run.jahmm.gpu.gpu.HmmGaussianReal;  

import be.ac.ulg.montefiore.run.jahmm .gpu.gpu.OpdfGaussianGPU;  

 

public class ViterbiKernel implements Kernel {  

 

  private HmmGaussianReal hmm;  

  private double[] observations;  

  private double[][] delta;  

  private int[][] psy;  

  private int[] barrier_in;  

  private int[] barrier_out;  

 



 

 

116 

018  

019  

020  

021  

022  

023  

024  

025  

026  

027  

028  

029  

030  

031  

032  

033  

034  

035  

036  

037  

038  

039  

040  

041  

042  

043  

044  

045  

046  

047  

048  

049  

050  

051  

052  

053  

054  

055  

056  

057  

058  

059  

060  

061  

062  

063  

064  

065  

066  

  public  ViterbiKernel(double[][] delta, int[][] psy,  

      HmmGaussianReal hmm,  double[] observations,  

      int[] barrier_in, int[] barrier_out){  

     

    this.delta = delta;  

    this.psy = psy;  

    this.hmm = hmm;  

    this.observations = observations;  

    thi s.barrier_in = barrier_in;  

    this.barrier_out = barrier_out;  

  }  

   

  public void gpuMethod() {  

    int threadId = RootbeerGpu.getThreadId();     

    int obsSize = observations.length;  

 

    for(int t = 1; t < obsSize; ++t){  

      double observation = obs ervations[t];  

 

      computeStep(hmm, observation, t, threadId);  

      RootbeerGpu.threadfenceSystem();  

      globalSync(t);  

    }  

  }  

   

  private void computeStep(HmmGaussianReal hmm, double o,  

    int t, int j)  

  {  

    double minDelta = Double.MAX_VALU E;  

    int min_psy = 0;  

    int numStates = hmm.nbStates();  

    double[][] a = hmm.getA();  

 

    for (int i = 0; i < numStates; i++) {  

      double delta_value = delta[t - 1][i];  

      double thisDelta = delta_value -  StrictMath.log(a[i][j]);  

 

      if (minDe lta > thisDelta) {  

        minDelta = thisDelta;  

        min_psy = i;  

      }  

    }  

 

    OpdfGaussianGPU opdf = hmm.getOpdf(j);  

    delta[t][j] = minDelta -  StrictMath.log(opdf.probability(o));  

    psy[t][j] = min_psy;  

    RootbeerGpu.threadfenceSystem();  

  }  

}  

Figure 7.2.1 – Parallel HMM Viterbi Path with Rootbeer 

  



 

 

117 

 The major parallel part of this code is the globalSync primitive. It is designed to 

synchronize threads across GPU blocks. This can be difficult to do on the Tesla C2050 GPU 

because blocks are never removed from the GPU until they are completed (see section 2.6). 

To make our globalSync primitive work, we needed to carefully tune the number of 

threads, blocks and register count. We were able to use 14 blocks and 160 threads without 

running out of GPU global ram. The block and thread count was specific to the Tesla C2050 

and our code may simply deadlock if moved to another NVIDIA GPU model. The globalSync 

primitive is shown in the code below. We would like to thank Martin Illecker for bringing 

the globalSync [60] algorithm to our attention, however this is a modified version. 

001  

002  

003  

004  

005  

006  

007  

008  

009  

010  

011  

012  

013 

014  

015  

016  

017  

018  

019  

020  

021  

022  

023  

024  

025  

026  

027  

028  

029  

030  

031  

032  

033  

034  

  private void globalSync(int goal_value){  

    int[] local_barrier_in = barrier_in;  

    int[] local_barri er_out = barrier_out;  

    int count = 0;  

    int iter = 0;  

    int thread_value = 0;  

    int needed_count = local_barrier_in.length;  

     

    while(count < needed_count){  

      if(RootbeerGpu.getThreadIdxx() == 0){  

        local_barrier_in[RootbeerGpu.getB lockIdxx()] =  

          goal_value;  

      }  

      RootbeerGpu.threadfenceSystem();  

      if(RootbeerGpu.getThreadIdxx() < needed_count){  

        thread_value =  

          local_barrier_in[RootbeerGpu.getThreadIdxx()];  

      } else {  

        thread_value =  - 1;  

      }  

      int match;  

      if(thread_value == goal_value){  

        match = 1;  

      } else {  

        match = 0;  

      }  

      count = RootbeerGpu.syncthreadsCount(match);  

    }  

    count = 0;  

    while(count < needed_count){  

      if(RootbeerGpu.g etThreadIdxx() == 0){  

        local_barrier_out[RootbeerGpu.getBlockIdxx()] =  

          goal_value;  

      }  



 

 

118 

035  

036  

037  

038  

039  

040  

041  

042  

043  

044  

045  

046  

047  

048  

049  

050  

      RootbeerGpu.threadfenceSystem();  

      if(RootbeerGpu.getThreadIdxx() < needed_count){  

        thread_value =  

          local_barrier_out[Ro otbeerGpu.getThreadIdxx()];  

      } else {  

        thread_value = - 1;  

      }  

      int match;  

      if(thread_value == goal_value){  

        match = 1;  

      } else {  

        match = 0;  

      }  

      count = RootbeerGpu.syncthreadsCount(match);  

    }  

  }  

 Figure 7.2.2 – HMM Global Sync method in Java 

 Below we have listed the individual timings of the GPU and CPU version for the 

HMM Viterbi Path algorithm. You can see that the GPU is approximately 102.7x faster than 

a single core CPU. Since the computation kernel takes a long time, the serialization and 

memory copy times do not drastically affect the total GPU time and we obtain a good 

speedup with this O(n^2*t) algorithm. 

Java Serialization Time 387 ms 
JNI Driver Memcpy to Device 142 ms 
GPU Execution Time 19568 ms 
JNI Drive Memcpy From Device 141 ms 
Java Deserialization Time 289 ms 
Total GPU Time 22829 ms 
Total CPU Time 2346225 ms 

Figure 7.2.3 – HMM Viterbi Path on NVIDIA Tesla C2050 GPU and Single Intel Xeon Core 
 

 After the HMM training and likelihood calculations are complete we are using a 

hierarchical agglomerate clustering library from Lars Behnke on github [61]. This phase 

takes very little time compared to the previous two. After that is complete the clustering is 

displayed using iTOL [62]. A sample resultant output is shown below. You can see in this 

preliminary result that similar bacteria strains are colored the same and often close to each 



 

 

119 

other in the chart. The biologist will then use this to try to make connections between the 

high-level behavior of the organism and the organization of the machinery inside the cell 

 

 

 

 

 

 

Figure 7.2.4 – Clustering of 308 mutated Myxococcus xanthus strains 

 

7.3 Scan Example  

 Scan is a parallel primitive that can sum the array elements in parallel. We have 

ported a parallel scan example from the CUDA examples. We would like to note that this 

GPU algorithm is not original work, but it is important to measure the speed of other GPU 

algorithms and it shows that a fairly complicated NVIDIA example can be directly ported to 

use Rootbeer using the provided GPU primitives. There is not a speedup in this example 

because the serialization and memory copies to the device are a bottleneck. 

001  

002  

003  

004  

005  

006  

007  

008  

009  

010  

011  

012  

013  

014  

package org.trifort.rootbeer.examples.scan;  

 

import org.trifort.rootbeer.runtime.Kernel;  

import org.trifort.rootbeer.runtime.RootbeerGpu ;  

 

public class GPUScanKernel implements Kernel {  

 

  private float[][] inputData;  

  private float[][] outputData;  

  private static final int INT_SIZE = 4;  

 

  public GPUScanKernel(float[][] inputData,  

    float[][] outputData){  

    this.inputData = inputDa ta;  



 

 

120 

015  

016  

017  

018  

019  

020  

021  

022  

023  

024  

025  

026  

027  

028  

029  

030  

031  

032  

033  

034  

035  

036  

037  

038  

039  

040  

041  

042  

043  

044  

045  

046  

047  

048  

049  

050  

051  

052  

053  

054  

055  

056  

057  

058  

059  

060  

061  

062  

063  

064  

065  

066  

067  

068  

    this.outputData = outputData;  

  }  

 

  public void gpuMethod(){  

    int block_idxx = RootbeerGpu.getBlockIdxx();  

    int thid = RootbeerGpu.getThreadIdxx();  

    int offset = 1;  

 

    float[] localInputData = inputData[block_idxx];  

    int n = localInp utData.length;  

    RootbeerGpu.setShared Float((2*thid)* INT_SIZE,  

      localInputData[2*thid]);  

    RootbeerGpu.setSharedFl oat((2*thid+1)* INT_SIZE,  

      localInputData[2*thid+1]);  

 

    for(int d = n >> 1; d > 0; d >>= 1){  

      RootbeerGpu.syncthreads() ;  

      if(thid < d){  

        int ai = offset*(2*thid+1) - 1;  

        int bi = offset*(2*thid+2) - 1;  

        float temp_ai = RootbeerGpu.get SharedFloat(ai* INT_SIZE);  

        float temp_bi = RootbeerGpu.get SharedFloat(bi* INT_SIZE);  

        RootbeerGpu.set Share dFloat(bi* INT_SIZE,  

          temp_ai + temp_bi);  

      }  

      offset *= 2;  

    }  

 

    if(thid == 0){  

      RootbeerGpu. setSharedFloat((n - 1)* INT_SIZE, 0);  

    }  

 

    for(int d = 1; d < n; d *= 2){  

      offset >>= 1;  

      RootbeerGpu.syncthreads();  

      if(thid < d){  

        int ai = offset*(2*thid+1) - 1;  

        int bi = offset*(2*thid+2) - 1;  

 

        float tA = RootbeerGpu.getSharedFloa t(ai* INT_SIZE);  

        float tB = RootbeerGpu.get SharedFloat(bi* INT_SIZE);  

 

        RootbeerGpu.set SharedFloat(ai* INT_ SIZE, tB);  

        RootbeerGpu.set SharedFloat(bi* INT_SIZE, tA + tB);  

      }  

    }  

 

    RootbeerGpu.syncthreads();  

    outputData[block_idxx][2*thid] =  

      RootbeerGpu.getShared Float((2*thid)* INT_SIZE);  

    outputData[block_idxx][2*thid+1] =  

      Root beerGpu.getSharedFl oat((2*thid+1)* INT_SIZE);  

  }  

}  

Figure 7.3.1 – Parallel GPU Scan with Rootbeer 



 

 

121 

 Below we have listed the individual timings of the GPU and CPU version. We do not 

see a speedup using Rootbeer because the serialization and deserialization times are not 

fast enough. Improving the serialization speed is possible but has not been included in this 

work at this time. 

Java Serialization Time 446 ms 
JNI Driver Memcpy to Device 248 ms 
GPU Execution Time 84 ms 
JNI Drive Memcpy From Device 292 ms 
Java Deserialization Time 411 ms 
Total GPU Time 1484 ms 
Total CPU Time 208 ms 

Figure 7.3.2 - Scan Timings on NVIDIA Tesla C2050 GPU and Single Intel Xeon Core  
 

7.4 Histogram Example 

 Parallel histogram is an algorithm that can be used in parallel garbage collection, as 

described in [38]. We have ported a parallel histogram example from the CUDA examples 

and, again, would like to note that the GPU algorithm is not original work. Again, this 

example shows that a complicated example from NVIDIA can be ported to Rootbeer. The 

code is shown below. 

001  

002  

003  

004  

005  

006  

007  

008  

009  

010  

011  

012  

013  

014  

015  

016  

017  

018  

019  

package org.trifort.rootbeer.examples.hist;  

 

import org.trifort.rootbeer.runtime.Kernel;  

import org.trifort.rootbeer.runtime.R ootbeerGpu;  

 

public class GPUHistKernel implements Kernel {  

 

  private int[] inputData;  

  private int[] outputData;  

 

  public static final int BIN_COUNT = 64;  

  public static final int BYTE_SIZE = 1;  

  public static final int SHORT_SIZE = 2;  

  public stati c final int INT_SIZE = 4;  

  public static final int THREAD_N = 192;  

  public static final int BLOCK_MEMORY = THREAD_N * BIN_COUNT;  

  public static final int BLOCK_DATA = THREAD_N * 63;  

  public static final int DATA_N = 96000000 / INT_SIZE;  

  public static  final int MAX_BLOCK_N = 16384;  



 

 

122 

020  

021  

022  

023  

024  

025  

026  

027  

028  

029  

030  

031  

032 

033  

034  

035  

036  

037  

038  

039  

040  

041  

042  

043  

044  

045  

046  

047  

048  

049  

050  

051  

052  

053  

054  

055  

056  

057  

058  

059  

060  

061  

062  

063  

064  

065  

066  

067  

068  

069  

070  

071  

072  

073  

074  

075  

076  

 

  public GPUHistKernel(int[] inputData, int[] outputData){  

    this.inputData = inputData;  

    this.outputData = outputData;  

  }  

 

  private int min(int left, int right){  

    if(left < right){  

      return left;  

    } else {  

      return right;  

    }  

  }  

 

  private int mul24(int a, int b){  

    return (a & 0xFFFFFF) * (b & 0xFFFFFF);  

  }  

 

  private void addData64(int threadPos, int data){  

    int index = threadPos  + mul24(data, THREAD_N); 

    short value = RootbeerGpu.getShare dShort(index * SHORT_SIZE);  

    ++value;  

    RootbeerGpu.setShare dShort(index * SHORT_SIZE, value);  

  }  

 

  public void gpuMethod(){  

    int block_dimx = RootbeerGpu.getBlockDimx();  

    int block_idxx = RootbeerGpu.getBlockIdxx();  

    int thread_idxx = Root beerGpu.getThreadIdxx();  

 

    //Global base index in input data for current block  

    int bas eIndex = mul24( BLOCK_DATA, block_idxx);  

 

    //Current block size, clamp by array border  

    int dataSize = min( DATA_N -  baseIndex, BLOCK_DATA); 

 

    //Encode thre ad index in order to avoid bank conflicts in  

    // s_Hist[] access:  each half - warp accesses consecutive shared  

    //memory banks and the same bytes within the banks  

    int threadPos =  

      //[31 : 6] <== [31 : 6]  

      ((thread_idxx & (~63)) >> 0) |  

      //[5  : 2] <== [3  : 0]  

      ((thread_idxx &    15) << 2) |  

      //[1  : 0] <== [5  : 4]  

      ((thread_idxx &    48) >> 4);  

 

    int end_position = GPUHistConstants.BLOCK_MEMORY;  

    for(int pos = th read_idxx; pos < end_position;  

        pos += bl ock_dimx){  

      RootbeerGpu.se tSharedInteger(pos * INT_SIZE, 0);  

    }  

 

    RootbeerGpu.syncthreads();  

 

    //////////////////////////////////////////// ////////////////  

    // Cycle through current block, update per - thread histograms  



 

 

123 

077  

078  

079  

080  

081  

082  

083  

084  

085  

086  

087  

088  

089  

090  

091  

092  

093  

094  

095  

096 

097  

098  

099  

100  

101  

102  

103  

104  

105  

106  

107  

108  

109  

110  

112  

113  

114  

115  

116  

117  

118  

119  

120  

121  

122  

123  

124  

125  

126  

127  

128  

129  

    // Since only 64 - bit histogram of 8 - bit input data array is  

    // calculated,  only highest 6 bits of each 8 - bit data element  

    // are extracted,  leaving out 2 lower bits.  

    //////////////////////////////////////////// ////////////////  

 

    //read the handle from the field into a register because it  

    // is used  repeatedly in a loop  

    int[] localInputData = inputData;  

    int[] localOutputData = outputData;  

 

    for(int pos = thread_idxx; pos < dataSize; pos += block_dimx){  

      int item = localInputData[pos];  

      addData64(threadPos, (item >>  2) & 0x3F);  

      addData64(threadPos, (item >> 10) & 0x3F);  

      addData64(threadPos, (item >> 18) & 0x3F);  

      addData64(threadPos, (item >> 26) & 0x3F);  

    }  

 

    RootbeerGpu.syncthreads();  

 

    //////////////////// //////////////////////// ///////////////  

    // Merge per - thread histograms into per - block and write to  

    // global memory.  Start accumulation positions for half - warp   

    // each thread are shifted  in order to avoid bank conflicts.  

    // See supplied whitepaper for detailed explanations.  

    //////////////////////////////////// ///////////////////////  

    if (thread_idxx < BIN_COUNT){  

      //64 threads here  

      int sum = 0;  

      int value = thread_idxx;  

 

      int valueBase = mul24(value, THREAD_N); 

      int startPos = mul24(thread_idxx & 15, 4);  

 

      //Threads with non - zero start positions wrap around the  

      // THREAD_N border  

      int sharedIndex = 0;  

      for(int i = 0, accumPos =  startPos; i < THREAD_N; i++){  

        int rawIndex = (valueB ase + accumPos);  

        int shortInde x = rawIndex * SHORT_SIZE; 

        short shrdValue = RootbeerGpu.getSharedShort(shortIndex);  

        sum += shr dValue;  

        if (++accumPos == THREAD_N) {  

          accumPos = 0;  

        }  

      }  

 

      //value is in dex  

      RootbeerGpu.atomicAddGlobal(localOutputData, value, sum);  

    }  

  }  

}  

Figure 7.4.1 – Parallel GPU Histogram with Rootbeer 



 

 

124 

 Below we have listed the individual timings of the GPU and CPU version. Similar to 

the parallel scan, we are not seeing a speedup due to the serialization and memory copy 

pressures.  

Java Serialization Time 45 ms 
JNI Driver Memcpy to Device 45 ms 
GPU Execution Time 10 ms 
JNI Drive Memcpy From Device 53 ms 
Java Deserialization Time 43 ms 
Total GPU Time 194 ms 
Total CPU Time 175 ms 

Figure 7.4.2- Histogram Timings on NVIDIA Tesla C2050 GPU and Single Intel Xeon Core 
 

7.5 Performance Conclusions 

 In conclusion, Rootbeer can speedup processing if there is approximatly O(n^3) 

work that needs to be done for O(n) elements of data that need to be serialized. In cases 

where there is approximately O(n) work per O(n) elements of data, we do not see any 

speedups. 

  



 

 

125 

 
 
 

Chapter 8 
 
 
 
 
 
 
 
 
 

Conclusions 
Recommendations 

Future Work 
 
 
 
 
 

 

 In this chapter we will summarize this work, give recommendations on supporting 

Java on GPUs in an industrial setting and note areas of future research.  

 

8.1 Conclusions 

 This research started as an attempt to ease programming on GPUs. With better 

serialization and CUDA code generation support, the developer can spend more time on 

choosing a “cut-point” to launch to the GPU and configure the thread/block/register count. 



 

 

126 

 We have shown that Rootbeer has good wall-clock performance on our test cases 

demonstrating that it is feasible to program GPUs from Java. Therefore we conclude that 

Rootbeer makes programming GPUs easier. Rootbeer is well known in the GPU software 

community, with over 960 stars on github, the openjdk domain linking to Rootbeer and a 

statement of state-of-the-art in a DARPA grant solicitation. 

 

8.2 Recommendations 

 Currently GPUs cannot be used from Java in an industrial setting where clients of 

Oracle and NVIDIA are expecting perfect operation for all features in Java. In order for this 

to happen, several problems must be solved. 

 The first problem is that NVIDIA GPUs do not support dynamically changing the 

instruction memory while the GPU is operating. NVIDIA must support this for an industrial 

version of Rootbeer because Java programs can dynamically load classes from byte arrays 

obtained through a network socket. With this problem, Oracle must decide if they will port 

the C1/C2 compilers to the GPU or leave them running solely on the CPU. If they port the 

C1/C2 compilers to run on the GPU they must re-write the code in CUDA and aggressively 

tune the machine instructions emitted to match performance of C1/C2 on the CPU. 

Otherwise the compilation from Java Bytecode to GPU assembly instructions will be too 

slow for JIT to be a viable strategy. Also, if the compilers are ported to the GPU, they must 

phrase compilation in terms of parallel processors or they will most likely see a 

performance degradation due to not using all 448 cores (Tesla C2050) since each core is 

clocked at a much lower clock rate (around 1.1 GHz) and the cores are not meant for 

branchy code. If a developer were to achieve compiling in parallel they will have to either 



 

 

127 

schedule 448 methods to compile at once, facing divergence issues, or create a micro 

compilation engine that compiles pieces cooperatively with 448 threads, or otherwise 

create entirely new algorithms and data structures. This may be possible, but will most 

likely be a larger time and resource investment than the option listed below. 

 The other option is for Oracle to leave the C1/C2 compilers on the GPU. If this is 

chosen, then NVIDIA must provide first-class support for communication between the GPU 

and CPU while the GPU is running. With this feature from NVIDIA, the GPU can ask the 

existing CPU compiler to compile a method on the single-core host processor and return 

the results to the GPU when ready. The GPU will then take the binary fragment for the 

method and incorporate it into the existing GPU code by dynamically changing the 

instruction memory. There are many other uses for a general-purpose communication 

channel between the GPU and CPU, such as: 

1) File I/O 

2) Network I/O 

3) Other device I/O such as medical imaging sensor 

 

 If there is no first-class support for CPU/GPU communication, Oracle can decide to 

use a static compilation step as Rootbeer did and they can use many of the ideas from 

Rootbeer. They can choose to precompile, and many things may be very similar to 

Rootbeer. If they decide to run complication right at the GPU launch point, then they will 

need to do static class loading for code found beyond that point. In this case it would help if 

there were pre-computed static call graphs for the JDK library classes. These could be 



 

 

128 

added to the JAR executable package as a binary coded file with extension *.cg (for call-

graph) that could be read by the JVM at GPU launch. 

 

8.3 Future Work 

 At this point we would like to summarize all future work that can help to improve 

Rootbeer or other similar systems. Each section contains items that can be improved or 

enhanced. 

 

8.3.1 Serialization Improvements 

 A major reason that the parallel scan example did not offer an improvement is that 

the serialization required too much time. In the existing serialization framework, a JNI call 

is made for each primitive type written to the GPU heap. If instead, each object had an 

allocated byte array and the primitives were written in pure Java, this would accelerate 

things significantly. It is well known that File-IO must be done using buffered access due to 

the overhead of JNI calls and this is a similar scenario. 

 If the serialization framework could change JDK library classes in addition to the 

application classes, then all items could be deserialized from the GPU heap, not just those 

items with sentinel and void constructors. However, there are legal terms with changing 

the bootclasspath, so we avoided this. Oracle, however, would be free to do this. 

 

 

 



 

 

129 

8.3.2 CUDA Code Generation Improvements 

 Two related aspects of CUDA code generation that could be improved are exceptions 

and stack traces. Passing in an additional out parameter to a function and checking for 

error conditions following execution is our technique that supports exceptions. In 

industrial compilers, the function simply jumps to an exception handler when the 

exception occurs. If Rootbeer emitted libNVVM IR that compiled directly to PTX and 

avoided using CUDA C, this would be better.  

 Regarding stack traces, it would be nice if the GPU could give a full stack trace of 

exceptions that occurred including line numbers from the original Java source code. This 

was attempted using line numbers from CUDA code, but the stack trace generation code 

was so slow that the computation could not return from the GPU displaying the error. The 

last time we checked, obtaining Java line numbers from the bytecode was buggy in Soot and 

this may also need additional work. 

 

8.3.3 Rootbeer Class Loading Improvements 

 In order to get the Rootbeer Class Loader accepted into the Soot master branch, 

more work needs to be done to support another source format. The initial investment from 

the Rootbeer Class Loader was focused on Coffi and later the Soot community moved to 

another bytecode parser based on ASM. At the current time Rootbeer has not converted it’s 

subsystem to reading bytecode using ASM, but, if this was done, the class loader could be 

used by other researchers in malware analysis and website taint checking. 

 

 



 

 

130 

8.3.4 Miscellaneous Improvements 

 To improve ease of compilation a maven plugin could be created that would allow a 

user to compile their application using Rootbeer from within maven. In addition, a profiler 

and debugger could be added so that Rootbeer applications could be analyzed natively 

within the Rootbeer API. Please note that you can currently profile CUDA/Rootbeer 

applications using nvprof and debug using cuda-memcheck and cuda-gdb. This 

improvement would be better in that it would allow one to see profile and debugging 

information in terms of the original Java source code rather than CUDA code. 

  



 

 

131 

Appendix A 
 
Listing of github stars from major technology companies. 
 

1. Adobe 
2. Alcatel-Lucent 
3. Amazon 
4. Apple 
5. Google (2) 
6. Intel 
7. JBoss by Redhat 
8. JetBrains 
9. LinkedIn 
10. Microsoft 
11. MongoDB 
12. NVIDIA 
13. Oracle 
14. Puppet Labs 
15. Red Hat (3) 
16. Twitter 

  



 

 

132 

Appendix B 
 
This appendix contains the full Java Bytecode listing of PrintNumbers.java. To print this 
information, you can use the following two commands: 
 
$ javac PrintNumbers.java 
$ javap –v PrintNumbers 
 

001  

002  

003  

004  

005  

006  

007  

008  

009  

010  

011  

012  

013  

014  

015  

016  

017  

018  

019  

020  

021  

022  

023  

024  

025  

026  

027  

028  

029  

030  

031  

032  

033  

034  

035  

036  

037  

038  

039  

040  

041  

042  

043 

044  

045  

046  

Classfile 

/Users/pcpratts/Desktop/code/disser/code/PrintNumbers.class  

  Last modified Oct 7, 2 013; size 423 bytes  

  MD5 checksum a27cc8bbfd33bb6e92ec12813e54d6ac  

  Compiled from "PrintNumbers.java"  

public class PrintNumbers  

  SourceFile: "PrintNumbers.java"  

  minor version: 0  

  major version: 50  

  flags: ACC_PUBLIC, ACC_SUPER  

Constant pool:  

   #1 =  Methodref          #5.#14         //  

java/lang/Object."<init>":()V  

   #2 = Fieldref           #15.#16        //  

java/lang/System.out:Ljava/io/PrintStream;  

   #3 = Methodref          #17.#18        //  

java/io/PrintStream.println:(I)V  

   #4 = Class              #19            //  PrintNumbers  

   #5 = Class              #20            //  java/lang/Object  

   #6 = Utf8               <init>  

   #7 = Utf8               ()V  

   #8 = Utf8               Code  

   #9 = Utf8               LineNumberTable  

  #10 = Utf8               print  

  #11 = Utf8               StackMapTable  

  #12 = Utf8               SourceFile  

  #13 = Utf8               PrintNumbers.java  

  #14 = NameAndType        #6:#7          //  "<init>":()V  

  #15 = Class              #21            //  java/la ng/System  

  #16 = NameAndType        #22:#23        //  

out:Ljava/io/PrintStream;  

  #17 = Class              #24            //  java/io/PrintStream  

  #18 = NameAndType        #25:#26        //  println:(I)V  

  #19 = Utf8               PrintNumbers  

  #20 = U tf8               java/lang/Object  

  #21 = Utf8               java/lang/System  

  #22 = Utf8               out  

  #23 = Utf8               Ljava/io/PrintStream;  

  #24 = Utf8               java/io/PrintStream  

  #25 = Utf8               println  

  #26 = Utf8               (I)V  

{  

  public PrintNumbers();  

    flags: ACC_PUBLIC  

    Code:  

      stack=1, locals=1, args_size=1  



 

 

133 

047  

048  

049  

050  

051  

052  

053  

054  

055  

056  

057  

058  

059  

060  

061  

062  

063  

064  

065  

066  

067  

068  

069  

070  

071  

072  

073  

074  

075  

076  

077  

078  

079  

080  

081  

082  

083  

         0: aload_0        

         1: invokespecial #1                  // Method 

java/lang/Object."<init>":()V  

         4: return         

      LineNumberTable:  

        line 1: 0  

 

  public void print();  

    flags: ACC_PUBLIC  

    Code:  

      stack=2, locals=2, args_size=1  

         0: iconst_0       

         1: istore_1       

         2: iload_1        

         3: bipush        10  

         5: if_ icmpge     21  

         8: getstatic     #2                  // Field 

java/lang/System.out:Ljava/io/PrintStream;  

        11: iload_1        

        12: invokevirtual #3                  // Method 

java/io/PrintStream.println:(I)V  

        15: iinc          1,  1 

        18: goto          2  

        21: return         

      LineNumberTable:  

        line 3: 0  

        line 4: 8  

        line 3: 15  

        line 6: 21  

      StackMapTable: number_of_entries = 2  

           frame_type = 252 /* append */  

             offs et_delta = 2  

        locals = [ int ]  

           frame_type = 250 /* chop */  

          offset_delta = 18  

 

}  

Figure B.1 – Complete Java Bytecode Listing for PrintNumbers.java 
  



 

 

134 

Appendix C 
 

Examples of compiling JNI code and using javah 

 

First you need a file with the native keyword: 
001  

002  

003  

004  

005  

006  

007  

008  

009  

010  

011  

012  

013  

package  org.trifort.jni_ example;  

 

public class JNI Example {  

     

  //it is good to make public wrappers around  

  //native methods  

  public void printString(String str){  

    pri ntStringNative(str);  

  }  

 

  //the native keyword is present here  

  private native void printStringNative(String str);  

}  

Figure C.1 ï JNIExample source code 

 

Once compiled with ant, the following directory structure is made: 

 project_root 

o build 

Á classes 

 org 

o trifort 

Á jni_example 

o csrc (you need to make this directory) 

 

Then you can make header files for JNI using javah and move it to the csrc folder 
 $ cd build/classes  

$ javah org.trifort.jni_example.JNIExample  

$ mv org_trifort_jni_example_ JNIExample.h ../../csr c/  

Figure C.2 ï Shell commands to create JNI header file with javah 

 

  



 

 

135 

Appendix D 
 
Code listing of Basic Example for RTAClass Loader Evaluation 
 
A.java 

001  

002  

003  

004  

005  

006  

public class A {  

  public static void main(String[] args){  

    B b = new B();  

    b.foo();  

  }  

}  

Figure D.1 – RTAClass Loader Evaluation A.java 
 
B.java 

001  

002  

003  

004  

005  

006  

007  

008  

009  

010  

011  

public class B {  

  public void foo(){  

    C c = new C();  

    c.abc();  

  }  

 

  public void bar(){  

    D d = new D();  

    d.abc();  

  }  

}  

Figure D.2 – RTAClass Loader Evaluation B.java 
 

C.java 
001  

002  

003  

004  

005  

public class C {  

  public void abc(){  

    System.out.println("In class C");  

  }  

}  

Figure D.3 – RTAClass Loader Evaluation C.java 
 

D.java 
001  

002  

003  

004  

005  

public class D {  

  public void abc(){  

    System.out.println("In class D");  

  }  

}  

Figure D.4 – RTAClass Loader Evaluation D.java 
  



 

 

136 

Bibliography 
 

1. Pratt-Szeliga, P.C. Rootbeer GPU Compiler Lets Almost Any Java Code Run On the GPU. 
2012; Available from: 
http://developers.slashdot.org/story/12/08/12/0056228/rootbeer-gpu-compiler-
lets-almost-any-java-code-run-on-the-gpu. 

2. Pratt-Szeliga, P.C. Rootbeer GPU Compiler. 2012; Available from: 
https://github.com/pcpratts/rootbeer1. 

3. Pratt-Szeliga, P.C., J.W. Fawcett, and R.D. Welch, Rootbeer: Seamlessly Using GPUs 
from Java, in NVIDIA GTC. 2013. 

4. Pratt-Szeliga, P.C., et al., Soot Class Loading in the Rootbeer GPU Compiler, in ACM 
PLDI SOAP. 2013. 

5. OpenJDK Community. Project Sumatra. 2012; Available from: 
http://openjdk.java.net/projects/sumatra/. 

6. Defense Advanced Research Projects Agency, Data-Parallel Analytics on Graphics 
Processing Units (GPUs). 2013. 

7. Lam, P., E. Bodden, and O. Lhoták, The Soot Framework for Java Program Analysis; A 
Retrospective, in Cetus Users and Compiler Infrastructure Workshop. 2011. 

8. Adereth, M. Counting Stars on Github. 2013; Available from: 
http://adereth.github.io/blog/2013/12/23/counting-stars-on-github/. 

9. Doll, B. 10 Million Repositories. 2013; Available from: 
https://github.com/blog/1724-10-million-repositories/. 

10. Lengyel, J., et al., Real-time Robot Motion Planning Using Rasterizing Computer 
Graphics Hardware, in ACM SIGGRAPH. 1990. 

11. Wikipedia. Wolfenstein 3D. 2015; Available from: 
http://en.wikipedia.org/wiki/Wolfenstein_3D. 

12. Wikipedia. John D. Carmack. 2015; Available from: 
http://en.wikipedia.org/wiki/John_D._Carmack. 

13. Game System Requirements. Wolfenstein 3d System Requirements. 2015; Available 
from: http://gamesystemrequirements.com/games.php?id=1728. 

14. Wikipedia. Doom (video Game). 2015; Available from: 
http://en.wikipedia.org/wiki/Doom_(video_game). 

15. Wikipedia. 3dfx Interactive. 2015; Available from: 
http://en.wikipedia.org/wiki/3dfx_Interactive. 

16. Wikipedia. Quake Engine. 2015; Available from: 
http://en.wikipedia.org/wiki/Quake_engine. 

17. Hoff, K.E., et al., Fast Computation of Generalized Voronoi Diagrams Using Graphics 
Hardware, in ACM SIGGRAPH. 1999. 

18. Harris, M.J., et al., Physically-based Visual Simulation on Graphics Hardware, in ACM 
SIGGRAPH / EUROGRAPHICS. 2002. 

19. Owens, J.D., et al., A Survey of General-Purpose Computation on Graphics Hardware. 
Computer Graphics Forum, 2007. 

20. NVIDIA. CUDA 1.0 Released. 2007; Available from: 
https://devtalk.nvidia.com/default/topic/373147/cuda-1-0-released/. 

21. The Khronos Group. OpenCL. 2009; Available from: 
https://www.khronos.org/opencl/. 

http://developers.slashdot.org/story/12/08/12/0056228/rootbeer-gpu-compiler-lets-almost-any-java-code-run-on-the-gpu
http://developers.slashdot.org/story/12/08/12/0056228/rootbeer-gpu-compiler-lets-almost-any-java-code-run-on-the-gpu
https://github.com/pcpratts/rootbeer1
http://openjdk.java.net/projects/sumatra/
http://adereth.github.io/blog/2013/12/23/counting-stars-on-github/
https://github.com/blog/1724-10-million-repositories/
http://en.wikipedia.org/wiki/Wolfenstein_3D
http://en.wikipedia.org/wiki/John_D._Carmack
http://gamesystemrequirements.com/games.php?id=1728
http://en.wikipedia.org/wiki/Doom_(video_game)
http://en.wikipedia.org/wiki/3dfx_Interactive
http://en.wikipedia.org/wiki/Quake_engine
https://devtalk.nvidia.com/default/topic/373147/cuda-1-0-released/
https://www.khronos.org/opencl/


 

 

137 

22. Hutter, M. Java Bindings for CUDA. 2009; Available from: http://www.jcuda.org/. 
23. Hutter, M. Java Bindings for OpenCL. 2009; Available from: http://www.jocl.org/. 
24. Chafik, O. JavaCL - OpenCL Bindings for Java. 2011; Available from: 

https://code.google.com/p/javacl/. 
25. Leung, A.C.-W., Automatic Parallelization for Graphics Processing Units in JikesRVM. 

2008, University of Waterloo. 
26. Calvert, P., Parallelisation of Java for Graphics Processors. 2010, University of 

Cambridge. 
27. Frost, G. Aparapi - API for data parallel Java. Allows suitable code to be executed on 

GPU via OpenCL. 2011; Available from: http://code.google.com/p/aparapi/. 
28. Deneau, T. Sumatra Dev Mailing List Message. 2015; Available from: 

http://mail.openjdk.java.net/pipermail/sumatra-dev/2015-May/000310.html. 
29. Clarkson, J., et al., Boosting Java Performance using GPGPUs. arXiv, 2015. 
30. Grossman, M., S. Imam, and V. Sarkar, HJ-OpenCL: Reducing the Gap Between the JVM 

and Accelerators. ACM PPPJ '15, 2015. 
31. Baxter, S. Modern GPU. 2013; Available from: http://nvlabs.github.io/moderngpu/. 
32. Sengupta, S., et al., Efficient Parallel Scan Algorithms for Many-core GPUs, in Scientific 

Computing with Multicore and Accelerators. 2010. 
33. Harris, M., S. Shubhabrata, and J.D. Owens, Parallel Prefix Sum (Scan) with CUDA, in 

GPU Gems 3. 2007, Addison-Wesley: Boston, MA. 
34. Merrill, D. and A. Grimshaw Parallel Scan for Stream Architectures. University of 

Virginia Technical Report, 2009. 
35. Merrill, D. and A. Grimshaw, High Performance and Scalable Radix Sorting: A Case 

Study of Implementing Dynamic Parallelism for GPU Computing. Parallel Processing 
Letters, 2011. 

36. Merrill, D., M. Garland, and A. Grimshaw. Scalable GPU Graph Traversal. in ACM 
SIGPLAN PPoPP. 2012. 

37. Alcantara, D.A., et al., Building an Efficient Hash Table on the GPU, in GPU Computing 
Gems, W.-m.W. Hwu, Editor. 2011, Morgan Kaufmann: San Francisco, CA. p. 39-53. 

38. Maas, M., et al., GPUs as an Opportunity for Offloading Garbage Collection, in ACM 
ISMM. 2012. 

39. Wikipedia. Java (programming Language). 2015; Available from: 
http://en.wikipedia.org/wiki/Java_(programming_language). 

40. Welton, D. Programming Language Popularity. 2013; Available from: 
http://www.langpop.com/. 

41. Meloan, S. The Java HotSpot performance engine: An in-depth look. 1999. 
42. Oracle, JNI Types and Data Structures, in Java Native Interface Specification. 2002. 
43. Vallée-Rai, R., et al., Soot - a Java Bytecode Optimization Framework, in IBM CASCON. 

1999. 
44. Brosius, D., et al. Apache Commons BCEL. Available from: 

http://commons.apache.org/proper/commons-bcel/index.html. 
45. Bruneton, E., R. Lenglet, and T. Coupaye, ASM: A Code Manipulation Tool to 

Implement Adaptable Systems, in Adaptable and Extensible Component Systems. 2002. 
46. Dolby, J. and S.J. Fink. WALA Wiki. 2006; Available from: 

http://wala.sourceforge.net/wiki/index.php/Main_Page. 

http://www.jcuda.org/
http://www.jocl.org/
https://code.google.com/p/javacl/
http://code.google.com/p/aparapi/
http://mail.openjdk.java.net/pipermail/sumatra-dev/2015-May/000310.html
http://nvlabs.github.io/moderngpu/
http://en.wikipedia.org/wiki/Java_(programming_language)
http://www.langpop.com/
http://commons.apache.org/proper/commons-bcel/index.html
http://wala.sourceforge.net/wiki/index.php/Main_Page


 

 

138 

47. Naik, M. and A. Aiken. JChord - A Static and Dynamic Program Analysis Playform for 
Java. 2008; Available from: https://code.google.com/p/jchord/. 

48. NVIDIA. Intel Xeon Phi: Just the Facts. 2013; Available from: 
http://www.nvidia.com/object/justthefacts.html. 

49. Downey, A., The Little Book of Semaphores. 2008. 
50. Bacon, D.F., Fast and Effective Optimization of Statically Typed Object-Oriented 

Languages, in Dissertation. 1997, University of Berkeley: Berkely, California. 
51. Bacon, D.F. and P.F. Sweeney, Fast Static Analysis of C++ Virtual Function Calls, in 

OOPSLA '96. 1996, ACM SIGPLAN. p. 324-341. 
52. Gamma, E., et al., Design Patterns: Elements of Reusable Object-oriented Software. 

1995, Reading, MA: Addison-Wesley. 
53. Vorontsov, M. String.intern in Java 6,  and 8 - String Pooling. 2013; Available from: 

http://java-performance.info/string-intern-in-java-6-7-8/. 
54. Cormen, T.H., et al., Section 22.4: Topolocial sort, in Introduction to Algorithms. 2001, 

MIT Press and McGraw-Hill. 
55. Shiv, K., et al., SPECjwm2008 Performance Characterization. Springer, 2009. 
56. Wikipedia. C Sharp (programming Language). 2015; Available from: 

http://en.wikipedia.org/wiki/C_Sharp_%28programming_language%29. 
57. Yates, R. Worlds Apart - C# and Java. 2007; Available from: 

http://robubu.com/?p=28. 
58. Rabiner, L. and B.-H. Juang, Fundementals of Speech Recognition. 1993: Prentice Hall. 
59. François, J.-M. Jahmm - An Implementation of Hidden Markov Models in Java. 2009; 

Available from: https://code.google.com/p/jahmm/. 
60. Xiao, S. and W.-c. Feng, Inter-block GPU communication via fast barrier 

synchronization, in IEEE IPDPS. 2010. 
61. Behnke, L. Hierarchical Clustering Java. 2012; Available from: 

https://github.com/lbehnke/hierarchical-clustering-java. 
62. Letunic, I. and P. Bork, Interactive Tree of Life V2: Online Annotation and Display of 

Phylogenetic Trees Made Easy. Nucleic Acids Research, 2011. 39. 
 

  

https://code.google.com/p/jchord/
http://www.nvidia.com/object/justthefacts.html
http://java-performance.info/string-intern-in-java-6-7-8/
http://en.wikipedia.org/wiki/C_Sharp_%28programming_language%29
http://robubu.com/?p=28
https://code.google.com/p/jahmm/
https://github.com/lbehnke/hierarchical-clustering-java


 

 

139 

Biographical Data 
 

Phil Pratt-Szeliga 
Computer Information Science and Engineering 

 
Phil Pratt-Szeliga earned his Bachelor of Science degree in Computer and Systems 

Engineering from Rensselaer Polytechnic Institute in 2005. He received his Master of 
Science degree in Computer Engineering in 2010 from Syracuse University. While earning 

his Master’s degree he also joined the doctoral program in Computer and Information 
Science and Engineering at Syracuse University in 2008. 

 
Phil Pratt-Szeliga has been honored at Syracuse University for his Master’s degree 

performance with the All University Master of Science Prize. 
 

While pursuing his degree, he worked as a Research Assistant in the Syracuse University 
Biology Department and also as an Instructor and Teaching Assistant in the Electrical 

Engineering and Computer Science Department. 
 

Phil Pratt-Szeliga has presented his computer science research at international conference 
meetings and workshops including IEEE/HPCC, ACM/PLDI/SOAP and NVIDIA/GTC. His 

computation biology work has been published in Nature’s Journal Scientific Reports which 
is ranked 5th among all multidisciplinary science primary research journals. 

 
Pratt-Szeliga’s open source compiler Rootbeer is a world leader in enabling Java on a 

Graphics Processing Units and has over 960 stars in github. Rootbeer’s github page has 
incoming links from the OpenJDK and Aparapi projects and Rootbeer has been named 

state-of-the-art in a recent DARPA STTR solicitation. 
 

Phil Pratt-Szeliga’s dissertation, The Rootbeer GPU Compiler, was supervised by Dr. 
James W. Fawcett 

 


