(2) Surface forces: forces acting on the boundaries of a medium through direct contact.
Another way (much longer)

\[R = \sqrt{\frac{A}{\pi}} \]

\[dV = (dr)(rd\theta)(dy) \]

\[dF_B = \mathbf{g} \cdot dV \]

\[\frac{2}{R_B} = \iint_H \mathbf{g} \cdot \mathbf{r} \, r \, dr \, d\theta \, dy \]

\[A = \pi R^2 \Rightarrow R = \sqrt{\frac{A}{\pi}} \]
\[\mathbf{dF}_B = \mathbf{g} \mathbf{dV} \]

\[\mathbf{dV} = A \, dy \]

\[A = 1 \, \text{ft}^2 \]

\[\mathbf{dF}_B = \mathbf{g} \cdot A \rho \, dy \]

\[\mathbf{F}_B = \int_{0}^{H} \left(A \rho \right) \mathbf{g} \cdot dy \]

\[H = 10 \, \text{ft} \]

\[\mathbf{F}_B = A \rho \mathbf{g} \int_{0}^{H} S_0 \left(1 + ky \right) \, dy \]

\[= A \rho S_0 \left(H + k \frac{H^2}{2} \right) \]
\[\delta \vec{F}_b = g \delta \vec{u} \]

Net body force

\[\vec{F}_b = \iiint \vec{dF}_b = \iiint g \delta \vec{u} \, dv \]

\[= \iiint g \delta \vec{u} \, dxdydz \]

\[= \iiint g \delta \vec{u} \, Ardz \, rdv \]
Example: a column of saline solution

\[A = 1 \text{ ft}^2 \quad \rho = \rho_0 (1 + ky) \quad 0.10 \text{ ft}^{-1} \]

\[H = 10 \text{ ft} \]

\[L = 1.94 \text{ slug/ft}^3 \]

Compute net body force acting on column
Consider gravity \(\vec{g} \) (acceleration or force per unit mass) acting on a fluid element of volume \(dV \) and density \(\rho = \rho(x) \).

\[\text{body force acting on } dV = \rho \vec{g} \frac{dV}{\text{mass}} \]

Check unit:

\[[g] \frac{[5V]}{[\rho]} \frac{[x]}{[x]} = \frac{\text{kg}}{m^3 \cdot s^2} \cdot \frac{m}{m} = \text{kg} \frac{m}{s^2} = \text{N} \]
Categories of forces in fluid mechanics

There are 2 types of forces acting on a fluid element: body forces and surface forces.

1. Body forces: forces developed without physical contact and distributed over volume of fluid. Examples are gravitational force and electromagnetic force.
Dimension / units

SI (Systeme International)
\[[M] = \text{kg} \quad [L] = \text{m} \quad [T] = \text{sec} \quad [\theta] = \circ K \]

BG (British Gravitational)
\[[F] = \text{lb} \quad [L] = \text{ft} \quad [T] = \text{sec} \quad [T] = \circ R \]
Equation of streamline is \(2cy = 16 \)

\(u = x \)

\(v = -y \)
\[\int \frac{dy}{y} = - \int \frac{dx}{x} \]

\[\ln y = - \ln x + C_1 \]

\[\ln y + \ln x = C_1 \]

\[e^{\ln xy} = e^{(C_1)} \]

\[xy = C \]

Determine the value of \(C \) from \(IC \)

\[(2)(8) = C \implies C = 16 \]
Solve ODE using method of separation of variable

\[\frac{dy}{dx} = -\frac{y}{x} \]

\[\frac{1}{y} dy = -\frac{1}{x} dx \]

\[\int \frac{dy}{y} = -\int \frac{dx}{x} \]

\[\ln y \bigg|_g^x = -\ln x \bigg|_2^x \]

One way of doing it
Example: construction of streamline given \(\vec{V} = \vec{V}(x,y) \)

Given: \(\vec{V} = (x) \hat{i} + (-y) \hat{j} \)

Find: streamline equation passing through point \((2, 8)\)

Analysis: \(\frac{dy}{dx} = \frac{\vec{v}}{\vec{u}} = -\frac{y}{2x} \)
Define \(\mathbf{V} = u \mathbf{i} + v \mathbf{j} \)

\[\nabla \times \mathbf{V} = 0 \]

\[\frac{\partial u}{\partial y} = 0 \]

\[\frac{\partial v}{\partial x} = 0 \]

\[\int u \, dy - v \, dx = 0 \]

\[\frac{dy}{dx} = \frac{v}{u} \]

1st order ODE for \(y = g(x) \) need IC
Equation for streamlines in 2D flows

\[ds = dx \hat{i} + dy \hat{j} \]

From definition of streamline, we have

\[\nabla \times \vec{V} \times ds = 0 \]