Secure Access Control Problem: Secure Command and Control for Dynamic Air Tasking

Shiu-Kai Chin
Department of Electrical Engineering & Computer Science
Syracuse University
http://www.ecs.syr.edu/faculty/chin
Objective

• Develop a secure system to support dynamic air tasking
 – Army units to specify targets in real time; AF controllers to issue/change air tasking orders to airborne assets in flight; Navy units to provide guidance

• You will develop
 – Security requirements & abstract model
 – Functional specification
 – Implementation
 – A means to assure accountability

• “System” includes people, organizational structure and roles, operations, networks, cryptographic keys, protocols, and computers
System Development Process*

- **Requirement**: establishing generic needs
- **Specification**: defining precisely what the system is supposed to do including *specification verification*, which involves demonstrating the specification meets the requirements
- **Implementation**: designing and building the system, including *implementation verification*, which involves demonstrating that the implementation meets the specification
- **Accountability**: designing and implementing auditing mechanisms so all actions are accounted for

Secure System Development Process*

Informal Development Path
- Security Requirements
 - (demonstration)
 - Functional Specification
 - (testing)
 - Implementation

Formal Development Path
- Abstract Model
 - (proof)
 - Formal Specification
 - (proof)
 - Implementation

Security Architecture*

• Security architecture describes how the system is put together to satisfy the security requirements

• Informal path is conventional: functional specifications and implementations shown to meet security requirements by demonstration and testing

• Formal path, using mathematical techniques, is employed for systems where an extremely high level of assurance regarding the security controls is required

How to Think About this Problem

- **Requirements**
 - What is the system supposed to accomplish?
 - What are the threats to security?
- **Specifications**
 - Who are the *subjects* (principals, actors, agents, roles)?
 - What are the *objects* (orders, services)?
 - What *operations* are performed on objects and by whom?
- **Implementation**
 - Organizational structure: roles and associated rights
 - Cryptographic protocols for privacy and integrity
 - Trust networks for cryptographic binding of keys, roles, and privileges to principals
- **Accountability**
 - What authority is associated with each role? How is assignment to roles tracked? How are orders issued and signed?
Requirements

• What is the system supposed to do?

• What are security threats?

Specifications

• Who are the subjects (actors)?

• What are the objects (orders, services)?

• What are the operations on objects? Who has permission to act on objects?
Implementation

• How are principals organized or grouped into roles?
• How are principals and their roles identified and authenticated?
• How is information determined to have integrity?
• How are cryptographic keys distributed?
• How is trust in cryptographic keys established and maintained?
Accountability

• How will authority be defined, assigned, verified, and accounted for?
• How will requests for air strikes be verified and accounted for?
• How will authority to order air strikes be verified and accounted for?
• How will guidance to targets be verified and accounted for?
Note on Implementation

• Implementation does not mean writing code
• Identify precisely, accurately, and in detail:
 – What components are used
 – The functionality of the components
 – How the components are organized, connected, and operate together to form the system
• Justification that the implementation meets the specification.
Your Task

• Answer the questions – when you’ve answered them all you’ll likely have a fairly complete system design
• Make the case that your specifications satisfy the requirements
• Make the case that your implementation satisfies your specifications
• Show how accountability is maintained throughout the system
Useful Tools

• Useful abstractions
 – Reference monitors
 – Access control matrix
 – Role-based access control
 – Cryptographically signed statements (certificates)
 – Integrity-checked channels

• Analytical tools
 – Access control logic for reasoning about principals, credentials, delegation, roles, trust, and access control